METHODS: Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation.
RESULTS: Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events.
CONCLUSIONS: The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events.
REGISTRATION: URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.
METHODS: 35 maxillary incisors were endodontically prepared. A dimensionally stable silicone material was injected into the root canal space and scanned with CBCT. The root canal volume was measured using Romexis 3.0.1 R software. Replicas were carefully removed from the teeth and scanned using an extraoral laser scanner. These images were exported to the Rhinoceros software for volume measurement. The volume of each replica was also assessed using the gravimetric method. To determine the accuracy, the volume obtained from both devices was compared with the gravimetric method. Statistical analysis was done using a paired t-test. The reliability was assessed using the intraclass correlation coefficient.
RESULTS: There was no statistically significant difference between the mean volume of CBCT 27.04 ± 7.25 mm³ and the mean volume of the gravimetric method 27.87 ± 7.17 mm³ (P< 0.05). A statistically significant difference was seen with the laser scanner at 25.31 ± 6.89 mm³ and the gravimetric method at 27.87 ± 7.17 mm³ (P< 0.05). CBCT showed a good degree of agreement (ICC 0.899), while the laser scanner showed a moderate degree of agreement (ICC 0.644) with the gravimetric method. CBCT proved accurate and reliable in measuring minor volumes like the root canal space, ideally in the range of 20-25 mm³. The laser scanner presented acceptable reliability.
CLINICAL SIGNIFICANCE: The laboratory data showed satisfactory outcomes, providing an evidence-based approach and potentially motivating clinicians to integrate cone-beam computed tomography for volume analysis into clinical practice. The accuracy and reliability of laser scanners for small-volume analysis have not previously been evaluated. Consequently, the findings from this study warrant further clinical investigations.
MATERIALS AND METHODS: Three populations were retrospectively examined. Group 1 included 1,137 consecutive18F-FDG PET/CT studies and was used to determine the prevalence of focal uptake at the RI or IC. Group 2 included 361 cases from a 10-year period with18F-FDG PET/CT and MRI of shoulder performed within 45 days of each other and was used to enrich the study group. Group 3 included 109 randomly selected patients from the same time frame as groups 1 and 2 and was used to generate the control group. The study group consisted of 15 cases from the three groups, which had positive PET findings. PET/CT images were assessed in consensus by two musculoskeletal radiologists. The reference standard for a diagnosis of AC was clinical and was made by review of the medical record by a pain medicine physician.
RESULTS: The prevalence of focal activity at either the RI or IC ("positive PET") was 0.53%. Nine patients had a clinical diagnosis of AC and 15 patients had a positive PET. The sensitivity and specificity of PET for detection of AC was 56% and 87%, respectively. PET/CT had a positive likelihood ratio for AC of 6.3 (95% CI: 2.8-14.6).
CONCLUSIONS: Increased uptake at the RI or IC on PET/CT confers a moderate increase in the likelihood of AC.