Displaying publications 121 - 140 of 944 in total

Abstract:
Sort:
  1. Lu B, Zhang C, Deng DR, Weng JC, Song JX, Fan XH, et al.
    Molecules, 2023 Oct 28;28(21).
    PMID: 37959733 DOI: 10.3390/molecules28217314
    Sodium-ion batteries (SIBs) are promising alternatives to replace lithium-ion batteries as future energy storage batteries because of their abundant sodium resources, low cost, and high charging efficiency. In order to match the high energy capacity and density, designing an atomically doped carbonous material as the anode is presently one of the important strategies to commercialize SIBs. In this work, we report the preparation of high-performance dual-atom-doped carbon (C) materials using low-cost corn starch and thiourea (CH4N2S) as the precursors. The electronegativity and radii of the doped atoms and C are different, which can vary the embedding properties of sodium ions (Na+) into/on C. As sulfur (S) can effectively expand the layer spacing, it provides more channels for embedding and de-embedding Na+. The synergistic effect of N and S co-doping can remarkably boost the performance of SIBs. The capacity is preserved at 400 mAh g -1 after 200 cycles at 500 mA g-1; more notably, the initial Coulombic efficiency is 81%. Even at a high rate of high current of 10 A g-1, the cell capacity can still reach 170 mAh g-1. More importantly, after 3000 cycles at 1 A g-1, the capacity decay is less than 0.003% per cycle, which demonstrates its excellent electrochemical performance. These results indicate that high-performance carbon materials can be prepared using low-cost corn starch and thiourea.
  2. Ghazali SAISM, Fatimah I, Bohari FL
    Molecules, 2021 Aug 22;26(16).
    PMID: 34443675 DOI: 10.3390/molecules26165086
    In this study, a controlled-release formulation of duplex herbicides, namely, 2,4,5-trichlorophenoxybutyric acid (TBA) and 3,4-dichlorophenoxy-acetic acid (3,4D), was simultaneously embedded into Zn-Al-layered double hydroxides (LDHs). The resulting nanohybrid Zinc-Aluminium-3,4D-TBA (ZADTX) was composed of a well-ordered crystalline layered structure with increasing basal spacing from 8.9 Å to 20.0 Å in the Powder X-ray Diffraction (PXRD) with 3,4D and TBA anions located in the gallery of LDHs with bilayer arrangement. The release of 3,4D and TBA fit the pseudo-second-order model. This duplex nanohybrid possessed a well-controlled release property (53.4% release from TBA and 27.8% release from 3,4D), which was highly effective, requiring the use of a small quantity and, hence, environmentally safer.
  3. Taha M, Rahim F, Ali M, Khan MN, Alqahtani MA, Bamarouf YA, et al.
    Molecules, 2019 Apr 18;24(8).
    PMID: 31003424 DOI: 10.3390/molecules24081528
    Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
  4. Tan AS, Singh J, Rezali NS, Muhamad M, Nik Mohamed Kamal NNS, Six Y, et al.
    Molecules, 2022 Aug 23;27(17).
    PMID: 36080141 DOI: 10.3390/molecules27175373
    The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).
  5. Adalat B, Rahim F, Taha M, Alshamrani FJ, Anouar EH, Uddin N, et al.
    Molecules, 2020 Oct 20;25(20).
    PMID: 33092223 DOI: 10.3390/molecules25204828
    We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.
  6. Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, et al.
    Molecules, 2014 Jan 21;19(1):1286-301.
    PMID: 24451249 DOI: 10.3390/molecules19011286
    A series of 4-methoxybenzoylhydrazones 1-30 was synthesized and the structures of the synthetic derivatives elucidated by spectroscopic methods. The compounds showed a varying degree of antiglycation activity, with IC50 values ranging between 216.52 and 748.71 µM, when compared to a rutin standard (IC50=294.46±1.50 µM). Compounds 1 (IC50=216.52±4.2 µM), 3 (IC50=289.58±2.64 µM), 6 (IC50=227.75±0.53 µM), 7 (IC50=242.53±6.1) and 11 (IC50=287.79±1.59) all showed more activity that the standard, and these compounds have the potential to serve as possible leads for drugs to inhibit protein glycation in diabetic patients. A preliminary SAR study was performed.
  7. Ouyang Y, Yang H, Zhang P, Wang Y, Kaur S, Zhu X, et al.
    Molecules, 2017 Sep 22;22(10).
    PMID: 28937657 DOI: 10.3390/molecules22101592
    Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 μg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.
  8. Mohammat MF, Shaameri Z, Hamzah AS
    Molecules, 2009;14(1):250-6.
    PMID: 19136912 DOI: 10.3390/molecules14010250
    Some novel 2,3-dioxo-5-(substituted)-arylpyrroles have been synthesized. Among these, pyrrolidine compound 1b was converted to 2,3-dioxo-5-aryl pyrrolidine 2b. Finally a set of hydrazone derivatives was obtained from the reaction of 2b with various hydrazine salts. The structures of all the new synthesized compounds were confirmed by elemental analyses, IR and 1H-NMR spectra.
  9. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, et al.
    Molecules, 2021 May 20;26(10).
    PMID: 34065194 DOI: 10.3390/molecules26103043
    Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 μM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 μM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.
  10. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
  11. Abdul Rahman MB, Jumbri K, Basri M, Abdulmalek E, Sirat K, Salleh AB
    Molecules, 2010 Apr 05;15(4):2388-97.
    PMID: 20428050 DOI: 10.3390/molecules15042388
    This paper reports the synthesis of a series of new tetraethylammonium-based amino acid chiral ionic liquids (CILs). Their physico-chemical properties, including melting point, thermal stability, viscosity and ionic conductivity, have been comprehensively studied. The obtained results indicated that the decomposition for these salts proceeds in one step and the temperature of decomposition (T(onset)) is in the range of 168-210 degrees C. Several new CILs prepared in this work showed high ionic conductivity compared to the amino acid ionic liquids (AAILs) found in the literature.
  12. Mohammed IA, Sankar G, Khairuddean M, Mohamad AB
    Molecules, 2010 Apr 30;15(5):3260-9.
    PMID: 20657475 DOI: 10.3390/molecules15053260
    A series of new mesogenic azomethine diols were successfully synthesized by condensation reactions between various chloroalkanols and N,N'-bis(4-hydroxy)-benzylidene-o-toluidine (1). The structures of these compounds were confirmed by CHN, FT-IR, (1)H-NMR, and (13)C-NMR spectrophotometer. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC) and polarizing optical microscope (POM). 4,4'-di(4-Hydroxybutoxy)-N-benzylidine-o-tolidine (2a) does not exhibit liquid crystalline properties. A nematic texture was observed for mesogenic diols 2b, and 2d, whereas the diol 2c exhibits a smectic mesophase. The increase of terminal alkyl chain in these mesogenic diols leads to a decrease in the transition temperature.
  13. Ng CH, Rullah K, Aluwi MF, Abas F, Lam KW, Ismail IS, et al.
    Molecules, 2014;19(8):11645-59.
    PMID: 25100256 DOI: 10.3390/molecules190811645
    The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31-27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
  14. Loh WS, Quah CK, Chia TS, Fun HK, Sapnakumari M, Narayana B, et al.
    Molecules, 2013 Feb 20;18(2):2386-96.
    PMID: 23429377 DOI: 10.3390/molecules18022386
    Four pyrazole compounds, 3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbaldehyde (1), 5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde (2), 1-[5-(4-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone (3) and 1-[3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]propan-1-one (4), have been prepared by condensing chalcones with hydrazine hydrate in the presence of aliphatic acids, namely formic acid, acetic acid and propionic acid. The structures were characterized by X-ray single crystal structure determination. The dihedral angles formed between the pyrazole and the fluoro-substituted rings are 4.64(7)° in 1, 5.3(4)° in 2 and 4.89(6)° in 3. In 4, the corresponding angles for molecules A and molecules B are 10.53(10)° and 9.78(10)°, respectively.
  15. Al-Majedy YK, Kadhum AA, Al-Amiery AA, Mohamad AB
    Molecules, 2014 Aug 07;19(8):11791-9.
    PMID: 25105917 DOI: 10.3390/molecules190811791
    Some novel coumarins were synthesized starting from 4-hydroxycoumarin and methyl bromoacetate. The structures of the newly obtained compounds were confirmed by elemental analysis, mass, IR and NMR spectra.
  16. Khandanlou R, Bin Ahmad M, Shameli K, Kalantari K
    Molecules, 2013 Jun 05;18(6):6597-607.
    PMID: 23739066 DOI: 10.3390/molecules18066597
    Small sized magnetite iron oxide nanoparticles (Fe3O4-NPs) with were successfully synthesized on the surface of rice straw using the quick precipitation method in the absence of any heat treatment. Ferric chloride (FeCl3·6H2O), ferrous chloride (FeCl2·4H2O), sodium hydroxide (NaOH) and urea (CH4N2O) were used as Fe3O4-NPs precursors, reducing agent and stabilizer, respectively. The rice straw fibers were dispersed in deionized water, and then urea was added to the suspension, after that ferric and ferrous chloride were added to this mixture and stirred. After the absorption of iron ions on the surface layer of the fibers, the ions were reduced with NaOH by a quick precipitation method. The reaction was carried out under N2 gas. The mean diameter and standard deviation of metal oxide NPs synthesized in rice straw/Fe3O4 nanocomposites (NCs) were 9.93 ± 2.42 nm. The prepared rice straw/Fe3O4-NCS were characterized using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) and Fourier transforms infrared spectroscopy (FT‒IR). The rice straw/Fe3O4-NCs prepared by this method have magnetic properties.
  17. Asman S, Yusof NA, Abdullah AH, Haron MJ
    Molecules, 2012 Feb 15;17(2):1916-28.
    PMID: 22337139 DOI: 10.3390/molecules17021916
    This work reports the synthesis and characterization of a hybrid molecularly imprinted polymer (MIP) membrane for removal of methylene blue (MB) in an aqueous environment. MB-MIP powders were hybridized into a polymer membrane (cellulose acetate (CA) and polysulfone (PSf)) after it was ground and sieved (using 90 µm sieve). MB-MIP membranes were prepared using a phase inversion process. The MB-MIP membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Parameters investigated for the removal of MB by using membrane MB-MIP include pH, effect of time, concentration of MB, and selectivity studies. Maximum sorption of MB by PSf-MB-MIP membranes and CA-MB-MIP membranes occurred at pH 10 and pH 12, respectively. The kinetic study showed that the sorption of MB by MB-MIP membranes (PSf-MB-MIP and CA-MB-MIP) followed a pseudo-second-order-model and the MB sorption isotherm can be described by a Freundlich isotherm model.
  18. Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA
    Molecules, 2013 Sep 26;18(10):11978-95.
    PMID: 24077176 DOI: 10.3390/molecules181011978
    Several new substituted sulfonamide compounds were synthesized and their structures were confirmed by ¹H-NMR, ¹³C-NMR, FT-IR, and mass spectroscopy. The antibacterial activities of the synthesized compounds were screened against standard strains of six Gram positive and four Gram negative bacteria using the microbroth dilution assay. Most of the compounds studied showed promising activities against both types of bacteria.
  19. Martula E, Morak-Młodawska B, Jeleń M, Okechukwu PN, Balachandran A, Tehirunavukarasu P, et al.
    Molecules, 2023 Nov 19;28(22).
    PMID: 38005384 DOI: 10.3390/molecules28227662
    Many new isomeric dipyridothiazine dimers have been presented as molecules with anticancer potential. These compounds were obtained in efficient syntheses of 1,6-, 1,8-, 2,7- and 3,6-diazaphenothiazines with selected alkylaromatic linkers. The structures of these compounds has been proven with two-dimensional spectroscopic techniques (COSY, NOESY, HSQC and HMBC) and high-resolution mass spectrometry (HRMS). In silico analyses of probable molecular targets were performed using the Way2Drug server. All new dimers were tested for anticancer activity against breast cancer line MCF7 and colon cancer line SW480. Cytotoxicity was assessed on normal L6 muscle cells. The tested dimers had high anticancer potential expressed as IC50 and the selectivity index SI. The most active derivative, 4c, showed an IC50 activity of less than 1 µM and an SI selectivity index higher than 100. Moreover, the compounds were characterized by low toxicity towards normal cells, simultaneously indicating a high cytostatic potential.
  20. Al-Sanea MM, Ali Khan MS, Abdelazem AZ, Lee SH, Mok PL, Gamal M, et al.
    Molecules, 2018 Jan 31;23(2).
    PMID: 29385071 DOI: 10.3390/molecules23020297
    A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives were synthesized and subjected to in vitro antiproliferative screening against National Cancer Institute (NCI)-60 human cancer cell lines of nine different cancer types. Fourteen compounds 5a-n were synthesized with three different solvent exposure moieties (4-hydroxylmethylpiperidinyl and trimethoxyphenyloxy and 4-hydroxyethylpiperazine) attached to the core structure. Substituents with different π and σ values were added on the terminal phenyl group. Compounds 5a-e with a 4-hydroxymethylpiperidine moiety showed broad-spectrum antiproliferative activity with higher mean percentage inhibition values over the 60-cell line panel at 10 µM concentration. Compound 5a elicited lethal rather than inhibition effects on SK-MEL-5 melanoma cell line, 786-0, A498, RXF 393 renal cancer cell lines, and MDA-MB-468 breast cancer cell line. Two compounds, 5a and 5d showed promising mean growth inhibitions and thus were further tested at five-dose mode to determine median inhibitory concentration (IC50) values. The data revealed that urea compounds 5a and 5d are the most active derivatives, with significant efficacies and superior potencies than paclitaxel in 21 different cancer cell lines belonging particularly to renal cancer and melanoma cell lines. Moreover, 5a and 5d had superior potencies than gefitinib in 38 and 34 cancer cell lines, respectively, particularly colon cancer, breast cancer and melanoma cell lines.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links