Displaying publications 121 - 136 of 136 in total

Abstract:
Sort:
  1. Reddy KB, Dash S, Kallepalli S, Vallikanthan S, Chakrapani N, Kalepu V
    J Contemp Dent Pract, 2013 Nov 1;14(6):1028-35.
    PMID: 24858745
    The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper).
    Matched MeSH terms: Dental Alloys/chemistry*
  2. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Alloys/chemistry
  3. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 11 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
    Matched MeSH terms: Gold Alloys/chemistry
  4. Alp S, Baka ZM
    Am J Orthod Dentofacial Orthop, 2018 Oct;154(4):517-523.
    PMID: 30268262 DOI: 10.1016/j.ajodo.2018.01.010
    INTRODUCTION: In this study, we aimed to determine the effect of regular probiotic consumption on microbial colonization in saliva in orthodontic patients and to comparatively evaluate the difference between the systemic consumption of probiotic products and the local application.

    METHODS: This study included 3 groups with 15 orthodontic patients in each. The control group included patients who had no probiotic treatment, the subjects in the kefir group consumed 2 × 100 ml of kefir (Atatürk Orman Ciftligi, Ankara, Turkey) per day, and the subjects in the toothpaste group brushed their teeth with toothpaste with probiotic content (GD toothpaste; Dental Asia Manufacturing, Shah Alam, Selangor, Malaysia) twice a day. Samples were collected at 3 times: beginning of the study, 3 weeks later, and 6 weeks later. The salivary flow rate, buffer capacity, and Streptococcus mutans and Lactobacillus levels in the saliva were evaluated. Chair-side kits were used to determine the S mutans and Lactobacillus levels.

    RESULTS: A statistically significant decrease was observed in the salivary S mutans and Lactobacillus levels in the kefir and toothpaste groups compared with the control group (P <0.05). A statistically significant increase was observed in the toothpaste group compared with the control and kefir groups in buffer capacity. Changes in the salivary flow rate were not statistically significant.

    CONCLUSIONS: The regular use of probiotics during fixed orthodontic treatment reduces the S mutans and Lactobacillus levels in the saliva.

    Matched MeSH terms: Dental Alloys/chemistry
  5. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Alloys/chemistry*
  6. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR
    Mater Sci Eng C Mater Biol Appl, 2015 Dec 1;57:397-413.
    PMID: 26354281 DOI: 10.1016/j.msec.2015.07.058
    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.
    Matched MeSH terms: Alloys
  7. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Alloys/pharmacology*
  8. Ali RM, Degenhardt R, Zambahari R, Tresukosol D, Ahmad WA, Kamar Hb, et al.
    EuroIntervention, 2011 May;7 Suppl K:K83-92.
    PMID: 22027736 DOI: 10.4244/EIJV7SKA15
    Coronary lesions in diabetics (DM) are associated with a high recurrence following percutaneous coronary intervention (PCI), even after drug-eluting stent (DES) deployment. Encouraging clinical data of the drug-eluting balloon catheter (DEB) SeQuent Please warrant its investigation in these patients.
    Matched MeSH terms: Chromium Alloys*
  9. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry*
  10. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Alloys
  11. Kokubo T
    Med J Malaysia, 2004 May;59 Suppl B:91-2.
    PMID: 15468833
    Metallic materials implanted into bone defects are generally encapsulated by a fibrous tissue. Some metallic materials such as titanium and tantalum, however, have been revealed to bond to the living bone without forming the fibrous tissue, when they were subjected to NaOH solution and heat treatments. Thus treated metals form bone tissue around them even in muscle, when they take a porous form. This kind of osteoconductive and osteoinductive properties are attributed to sodium titanate or tantalate layer on their surfaces formed by the NaOH and heat treatments. These layers induce the deposition of bonelike apatite on the surface of the metals in the living body. This kind of bioactive metals are useful as bone substitutes even highly loaded portions, such as hip joint, spine and tooth root.
    Matched MeSH terms: Alloys
  12. Lim KS, Wo SW, Wong MH, Tan CT
    Epilepsy Behav, 2013 Apr;27(1):130-4.
    PMID: 23416283 DOI: 10.1016/j.yebeh.2012.12.034
    Studies on the impact of epilepsy on employment have been extensively performed in European and some Asian countries but not in Southeast Asia such as Malaysia, a country with a robust economy, low unemployment rate, and minimal social security benefits for the unemployed. This study aims to determine the impact of epilepsy on employment in Malaysia.
    Matched MeSH terms: Dental Alloys
  13. Sia S, Shibazaki T, Koga Y, Yoshida N
    Am J Orthod Dentofacial Orthop, 2009 Jan;135(1):36-41.
    PMID: 19121498 DOI: 10.1016/j.ajodo.2007.01.034
    This study was designed to determine the optimum vertical height of the retraction force on the power arm that is required for efficient anterior tooth retraction during space closure with sliding mechanics.
    Matched MeSH terms: Chromium Alloys
  14. Seow LL, Toh CG, Wilson NH
    Eur J Prosthodont Restor Dent, 2005 Jun;13(2):57-64.
    PMID: 16011232
    Existing literature suggests a relationship between the amount of remaining tooth structure and the fracture resistance of the restored endodontically treated tooth. This study investigated the amount of tooth structure remaining following various tooth preparations used in the restoration of the endodontically treated maxillary second premolar. Illustrations of the maxillary second premolar in buccopalatal, mesiodistal and occlusal sections were drawn to scale. Outlines of various intra- and extracoronal preparations were superim-posed on the illustrations to reveal the amount of tooth tissue remaining in each case. Preparations for a ceramic inlay, inlay with palatal cusp coverage and onlay left 2.0-2.5mm of tooth structure buccally and palatally. Following preparation for a metal-ceramic crown, approximately 1.0mm of tooth structure remained buccally, and between 1.6mm-1.8mm palatally. Preparation for an all-ceramic crown was observed to leave 1.0mm-1.2mm of tooth structure surrounding what remained of the endodontic access cavity. It was concluded that decisions as to the type of definitive restoration to restore the endodontically treated maxillary second premolar may be influenced, amongst other factors, by information on the amount of tooth tissue remaining following preparation.
    Matched MeSH terms: Metal Ceramic Alloys
  15. Montefusco A, D'Ascenzo F, Gili S, Smolka G, Chieffo A, Baumbach A, et al.
    Catheter Cardiovasc Interv, 2019 02 01;93(2):208-215.
    PMID: 30298593 DOI: 10.1002/ccd.27809
    OBJECTIVES: To compare the effectiveness and safety of self-expandable, sirolimus-eluting Stentys stents (SES) and second-generation drug-eluting stents (DES-II) for the treatment of the unprotected left main (ULM).

    BACKGROUND: SES may provide a valuable option to treat distal ULM, particularly when significant caliber gaps with side branches are observed.

    METHODS: Patients from the multicenter SPARTA (clinicaltrials.gov: NCT02784405) and FAILS2 registries were included. Propensity-score with matching was performed to account for the lack of randomization. Primary end-point was the rate of major adverse cardiovascular events (MACE, a composite of all cause death, myocardial infarction, target lesion revascularization [TLR], unstable angina and definite stent thrombosis [ST]). Single components of MACE were the secondary end-points.

    RESULTS: Overall, 151 patients treated with SES and 1270 with DES-II were included; no differences in MACE rate at 250 days were observed (9.8% vs. 11.5%, P = 0.54). After propensity score with matching, 129 patients treated with SES and 258 with DES-II, of which about a third of female gender, were compared. After a follow-up of 250 days, MACE rate did not differ between the two groups (9.9% vs. 8.5%, P = 0.66), as well as the rate of ULM TLR (1.6% vs. 3.1%, P = 0.36) and definite ST (0.8% vs. 1.2%, P = 0.78). These results were consistent also when controlling for the treatment with provisional vs. 2-stents strategies for the ULM bifurcation.

    CONCLUSION: SES use for ULM treatment was associated with a similar MACE rate compared to DES-II at an intermediate-term follow-up. SES might represent a potential option in this setting.

    Matched MeSH terms: Alloys
  16. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Dental Alloys
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links