METHODS: A total of 7386 clinical specimens were collected from HIV patients attending YRG CARE from 2010-2017. P. aeruginosa isolated from clinical specimens were identified conventionally, and antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion method.
RESULTS: A total of 260 P. aeruginosa strains were isolated, with 165 P. aeruginosa (63.5%) being isolated from hospitalised patients. A higher incidence of P. aeruginosa infection (25.8%) was observed in 2017, and most of the P. aeruginosa were isolated from sputum specimens (57.3%). A high level of resistance was noted to ceftazidime (49.6%), followed by ticarcillin (41.5%). Imipenem and meropenem resistance was observed in 15.0% and 16.9% of P. aeruginosa isolates, respectively. A high rate of imipenem resistance was noted in 2016 (46.2%) and a high rate of meropenem resistance was noted in 2017 (20.5%). An increasing resistance rate of P. aeruginosa was observed against aztreonam, cefepime, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam, ticarcillin and tobramycin from 2010 to 2017.
CONCLUSION: A constant increase in drug-resistant P. aeruginosa isolates from HIV patients was observed from 2010 to 2017. Findings from this study urge the need for periodical monitoring and surveillance of the P. aeruginosa resistance profile, especially in hospitalised and immunocompromised patients in resource-limited settings.
DATA DESCRIPTION: We tested the effects of SdsR and SdsRv2 on fluoroquinolone resistance in S. sonnei in vivo. SdsRv2 is a synthetic version which promotes higher binding stability to tolC mRNA. Overexpression of either SdsR or SdsRv2 lowers the expression of tolC mRNA. Interestingly, SdsR and SdsRv2 promote the growth of S. sonnei in the presence of a sub-inhibitory concentration of norfloxacin. Mutant carrying SdsRv2 showed the highest growth advantage. This phenotype is opposite to the effect of SdsR reported in E. coli. This study is an example that demonstrates the difference in the phenotypic effect of a highly conserved sRNA in two closely related bacteria.