Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions.
BACKGROUND:
Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.
METHODS:
RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.
RESULTS:
Based on Kal's Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.
CONCLUSION:
The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
This study reports the first full length gene of interferon related developmental regulator-1 (designated as MrIRDR-1), identified from the transcriptome of Macrobrachium rosenbergii. The complete gene sequence of the MrIRDR-1 is 2459 base pair long with an open reading frame of 1308 base pairs and encoding a predicted protein of 436 amino acids with a calculated molecular mass of 48 kDa. The MrIRDR-1 protein contains a long interferon related developmental regulator super family domain between 30 and 330. The mRNA expressions of MrIRDR-1 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) infected M. rosenbergii were examined using qRT-PCR. The MrIRDR-1 is highly expressed in hepatopancreas along with all other tissues (walking leg, gills, muscle, haemocyte, pleopods, brain, stomach, intestine and eye stalk). After IHHNV infection, the expression is highly upregulated in hepatopancreas. This result indicates an important role of MrIRDR-1 in prawn defense system.
Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii.
Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection.
BACKGROUND: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD) among type 2 diabetes mellitus patients (DM) in Malaysia. This study used microarray analysis to determine the gene expression profiling in ethnic Malay patients with type 2 DM.
METHODS: A total of 312 patients were recruited; 25 were on dialysis due to ESRD, 128 were classified as normoalbuminuric, 93 as microalbuminuric and 66 as macroalbuminuric, based on urine albumin to creatinine ratio of <3.5, between 3.5 and 35 and =35 mg/mmol, respectively.
RESULTS: Microalbuminuria was associated with up- and down-regulation of 2,694 and 2,538 genes, respectively, while macroalbuminuria was associated with up-regulation of 2,520 genes and down-regulation of 2,920 genes. There was significant up-regulation of 1,135 genes and down-regulation of 908 genes in the ESRD samples. Thirty-seven significantly up-regulated genes and 40 down-regulated genes were commonly expressed in all 3 groups of patients with worsening of renal functions. Up-regulated genes included major histocompatibility complex (HLA-C), complement component 3a receptor 1 (C3AR1), solute carrier family 16, member 3 (SLC16A3) and solute carrier family 9 (sodium/hydrogen exchanger) (SLC9A8). Consistently down-regulated genes included were bone morphogenetic phosphatase kinase (BMP2K), solute carrier family 12, member 1 (SLC12A1), solute carrier family 7 (SLC7A2), paternally expressed 10 (PEG10) and protein phosphatase 1 regulatory (inhibitor unit) (PPP1R1C).
CONCLUSION: This study has identified several genes of interest, such as HLA-C, SLC16A3, SLC9A8, SLC12A1 and SLC7A2, that require verification of their roles as susceptibility genes for diabetic nephropathy in ethnic Malays with type 2 DM.
Studies with clastogenic carcinogen diethylstilbestrol (DES) resulted in a broad of spectrum of toxic and carcinogenic effects in humans and rodents, but the cellular and molecular mechanism(s) by which it induces cancer is not clear. To identify putative genetic targets for p53 in vivo, we applied the cDNA macroarray gene expression profiles associated with apoptosis by comparing p53+/- knockout mice and wild-type mice on the kidney and uterus of female mice. p53+/- knockout mice and wild-type mice were treated with DES (500 micromole kg(-1)) or vehicle i.p once daily for 4 days. Total RNAs were obtained from kidney and uterus of both control and DES-treated. The signal intensities of individual gene spots on the membrane were quantified and normalized to the expression level of the GAPDH gene as an internal control. Our results demonstrated that 16 genes; bad, bax, bcl-2, bcl-w, bcl-x, caspase-3, caspase-7, caspase-8, c-myc, E124, GADD45, mdm2, NKkappab1, p53, p21, Rb and trail were up-regulated and six genes; caspase-1, caspase-2, DR5, E2F1, FasL and iNOS did not changed in response to DES treatment in wild-type mice compared to p53+/- knockout mice. Most genes are involved in cell cycle regulation, signal transduction, apoptosis, or transcription. The greatest changes were seen in bad, bcl-x, mdm2, p53 and p21 gene expression in wild-type mice compared to p53+/- knockout mice. In comparing p53 and p21 gene expression in wild-type mice and p53+/- knockout mice, there was an 4.4-fold vs. 1.8-fold; 8-fold vs. 5.2-fold for kidney and 16-fold vs. 5.5-fold; 2.1-fold vs. 8.3-fold for uterus samples increase in induction (respectively). RT-PCR and densitometric analysis was used to confirm the biggest changes of p21, p53 and bax genes. Using this approach, we have identified apoptosis associated genes regulated in response to DES and have revealed putative differences between the isogenic parent strain and p53+/- knockout mice, which will contribute to a better understanding of toxicity/carcinogenicity mechanisms in this model.
The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird's droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Long non-coding RNAs (lncRNAs) have been shown to possess a wide range of functions in both cellular and developmental processes including cancers. Although some of the lncRNAs have been implicated in the regulation of the immune response, the exact function of the large majority of lncRNAs still remains unknown. In this study, we characterized the lncRNAs in human primary monocytes, an essential component of the innate immune system. We performed RNA sequencing of monocytes from four individuals and combined our data with eleven other publicly available datasets. Our analysis led to identification of ~8000 lncRNAs of which >1000 have not been previously reported in monocytes. PCR-based validation of a subset of the identified novel long intergenic noncoding RNAs (lincRNAs) revealed distinct expression patterns. Our study provides a landscape of lncRNAs in monocytes, which could facilitate future experimental studies to characterize the functions of these molecules in the innate immune system.
Ornithine decarboxylase (ODC) is an enzyme of one of the two pathways of putrescine biosynthesis in plants. The genes encoding ODC have previously been cloned from Datura stramonium and human. Using differential screening, we isolated ODC cDNA clone from a cDNA library of ripening Capsicum annuum fruit. The cDNA clone designated CUKM10 contains an insert of 1523 bp. The longest open reading frame potentially encodes a peptide of 345 amino acids with an estimated molecular mass of 47 kDa and exhibit striking similarity to other ODCs. Expression analysis showed that the capODC hybridised to a single transcript with a size of 1.7 kb. The capODC transcript was first observed in early ripening and increased steadily until it reached fully ripening stage. From the observation it is suggested that capODC is developmentally regulated especially during later stage of ripening.
The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a p<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (p<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples.
Tissue-specific transcriptional programs control most biological phenotypes, including disease states such as cancer. However, the molecular details underlying transcriptional specificity is largely unknown, hindering the development of therapeutic approaches. Here, we describe novel experimental reporter systems that allow interrogation of the endogenous expression of HIF2A, a critical driver of renal oncogenesis. Using a focused CRISPR-Cas9 library targeting chromatin regulators, we provide evidence that these reporter systems are compatible with high-throughput screening. Our data also suggests redundancy in the control of cancer type-specific transcriptional traits. Reporter systems such as those described here could facilitate large-scale mechanistic dissection of transcriptional programmes underlying cancer phenotypes, thus paving the way for novel therapeutic approaches.
The infectious bursal disease (IBD) is an acute immunosuppressive viral disease that significantly affects the economics of the poultry industry. The IBD virus (IBDV) was known to infect B lymphocytes and activate macrophage and T lymphocytes, but there are limited studies on the impact of IBDV infection on chicken intraepithelial lymphocyte natural killer (IEL-NK) cells. This study employed an mRNA sequencing approach to investigate the early regulation of gene expression patterns in chicken IEL-NK cells after infection with very virulent IBDV strain UPM0081. A total of 12,141 genes were expressed in uninfected chicken IEL-NK cells, and most of the genes with high expression were involved in the metabolic pathway, whereas most of the low expressed genes were involved in the cytokine-cytokine receptor pathway. A total of 1,266 genes were differentially expressed (DE) at 3 day-post-infection (dpi), and these DE genes were involved in inflammation, antiviral response and interferon stimulation. The innate immune response was activated as several genes involved in inflammation, antiviral response and recruitment of NK cells to the infected area were up-regulated. This is the first study to examine the whole transcriptome profile of chicken NK cells towards IBDV infection and provides better insight into the early immune response of chicken NK cells.
Prolactin (PRL) has been shown to directly influence parental-care associated behavior in many vertebrate species. The discus fish (Symphysodon aequifasciata) displays extensive parental care behavior through utilization of epidermal mucosal secretion to raise free-swimming fry. Here, we cloned the full-length cDNA sequence of the S. aequifasciata prolactin receptor (dfPRLR) and investigated the mRNA expression pattern in several adult tissues. Bioinformatic analysis showed the dfPRLR shared rather high identity (79 and 67%) with the Nile tilapia PRLR 1 and black seabream PRLR 1, respectively. The presence of dfPRLR in several osmoregulatory tissues including kidney, gill and intestine is consistent with the known role of PRL in mediating hydromineral balance in teleosts. In addition, upregulated expression of PRLR mRNA was observed in skin of parental fish compared to non-parental fish, indicating possibility of a role of the PRL hormonal signaling in regulation of mucus production in relation to parental care behaviour.
Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value. So far, there is a paucity of information on the mango Rab GTPase family. In this study, 23 genes encoding Rab proteins were identified in mango by a comprehensive in silico approach. Sequence alignment and similarity tree analysis with the model plant Arabidopsis as a reference enabled the bona fide assignment of the deduced mango proteins to classify into eight subfamilies. Expression analysis by RNA-Sequencing (RNA-Seq) showed that the Rab genes were differentially expressed in ripe and unripe mangoes suggesting the involvement of vesicle trafficking during ripening. Interaction analysis showed that the proteins involved in vesicle trafficking and cell wall softening were interconnected providing further evidence of the involvement of the Rab GTPases in fruit softening. Correlation analyses showed a significant relationship between the expression level of the RabA3 and RabA4 genes and fruit firmness at the unripe stage of the mango varieties suggesting that the differences in gene expression level might be associated with the contrasting firmness of these varieties. This study will not only provide new insights into the complexity of the ripening-regulated molecular mechanism but also facilitate the identification of potential Rab GTPases to address excessive fruit softening.
The human ocular surface produces highly conserved cationic peptides. Human β‑defensins (HBDs) serve an important role in innate and adaptive immunity. They are primarily expressed in epithelial cells in response to infection and provide the first line of defence against invading microbes. Defensin β1 (DEFB1) is constitutively expressed and regulated by inflammatory mediators including interferon‑γ, lipopolysaccharide and peptidoglycans. DEFB4A is locally induced in response to microbial infection while DEFB109 is induced via Toll‑like receptor 2. The present study examined the expression of the HBD DEFB1, DEFB4A and DEFB109 genes in pterygium. The pterygium tissues and normal conjunctiva samples were obtained from 18 patients undergoing pterygium surgery. The reverse transcription‑quantitative polymerase chain reaction method was employed to determine the expression of DEFB1, DEFB4A and DEFB109 genes. The results revealed that the expression of DEFB1 and DEFB4A was significantly higher and upregulated in pterygium samples when compared with normal conjunctiva samples from each patient (P<0.05), while the expression of DEFB109 was observed to be lower in pterygium samples when compared with normal samples from the same patient. Previous studies have revealed that DEFB1 and DEFB4A genes are present in low concentrations inside the human eye, and they are upregulated during the maturation of keratinocytes, suggesting a possible role in cell differentiation. The DEFB109 gene is present in higher concentrations inside the human eye, though it is newly discovered. It has also been reported that DEFB1 may be involved in carcinogenesis epithelial tumours. Collectively, the current data suggests that HBDs may serve a crucial role in the pathogenesis and development of pterygia, and thus may be considered as novel molecular targets in understanding pterygia development.
Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.
Technological advances in RNA biology greatly improved transcriptome profiling during the last two decades. Besides the discovery of many small RNAs (sRNA) that are involved in the physiological and pathophysiological regulation of various cellular circuits, it becomes evident that the corresponding RNA genes might also serve as potential biomarkers to monitor the progression of disease and treatment. sRNA gene candidate npcTB_6715 was previously identified via experimental RNomic (unpublished data), and we report its application as potential biomarker for the detection of Mycobacterium tuberculosis (MTB) in patient samples. For proof of principle, we developed a multiplex PCR assay and report its validation with 500 clinical cultures, positive for Mycobacteria. The analysis revealed 98.9% sensitivity, 96.1% specificity, positive and negative predictive values of 98.6% and 96.8%, respectively. These results underscore the diagnostic value of the sRNA gene as diagnostic marker for the specific detection of MTB in clinical samples. Its successful application and the general ease of PCR-based detection compared to standard bacterial culture techniques might be the first step towards 'point-of-care' diagnostics of Mycobacteria. To the best of our knowledge, this is the first time for the design of diagnostic applications based on sRNA genes, in Mycobacteria.