METHODS: This single-centre prospective study, involved children aged from birth to 3 years old, admitted to PICU longer than 72 hours. They received either enteral nutrition (EN) or combination of EN and partial parenteral nutrition (PPN). Clinical and nutrition delivery characteristics were recorded from admission until transferred out of PICU. Multiple regression analysis at significant level p heart disease in PICU. Strategies to improve the nutrition delivery in this group of patients should be outlined and implemented by the dietitians along with multidisciplinary team.
METHODS: A pragmatic randomised controlled trial was conducted on 29 healthy sedentary adults (seven males and 22 females) in a 12-week exercise program. They were randomly assigned to group A (75 min/week, N.=15) or group B (150 min/week, N.=14) of moderate intensity aerobic exercise groups. HRR at 1-minute (HRR1), HRR at 2-minute (HRR2), and peak oxygen uptake (VO2peak) were measured pre- and post-intervention.
RESULTS: The improvements of HRR1 and HRR2 were seen in both groups but was only significant (P<0.05) for group A with HRR1, -4.07 bpm (post 24.47±6.42 - pre 20.40±5.51, P=0.018) and HHR2, -3.93 bpm (post 43.40±13.61 - pre 39.47±10.68, P=0.046). Group B showed increment of HRR1, -1.14 bpm (post 21.14±5.35 - pre 20.00±6.30, P=0.286) and HRR2, -2.5 bpm, (post 39.36±8.01 - pre 36.86±9.57, P=0.221). Improvement of the VO2peak was only significant in group B with an increment of 1.52±2.61 (P=0.049).
CONCLUSIONS: In conclusion, our study suggests that improvements in heart rate recovery (HRR1 and HRR2) among sedentary healthy adults can be achieved by engaging in moderate intensity exercise at a dose lower than the current recommended guidelines. The lower dose seems to be more attainable and may encourage exercise compliance. Future studies should further explore the effects of different exercise volumes on HRR in a larger sample size and also by controlling for BMI or gender.
METHODS: We did a systematic review and meta-analysis of randomised controlled trials including IPD. We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, MEDLINE Epub Ahead of Print, Embase, Science Citation Index, the Cochrane Controlled Trials Register, Cochrane Database of Systematic Reviews, and Database of Abstracts of Review of Effects for literature from 1992 onwards (date of search, Aug 27, 2018). The following inclusion criteria were applied: (1) men aged 18 years and older with a screening testosterone concentration of 12 nmol/L (350 ng/dL) or less; (2) the intervention of interest was treatment with any testosterone formulation, dose frequency, and route of administration, for a minimum duration of 3 months; (3) a comparator of placebo treatment; and (4) studies assessing the pre-specified primary or secondary outcomes of interest. Details of study design, interventions, participants, and outcome measures were extracted from published articles and anonymised IPD was requested from investigators of all identified trials. Primary outcomes were mortality, cardiovascular, and cerebrovascular events at any time during follow-up. The risk of bias was assessed using the Cochrane Risk of Bias tool. We did a one-stage meta-analysis using IPD, and a two-stage meta-analysis integrating IPD with data from studies not providing IPD. The study is registered with PROSPERO, CRD42018111005.
FINDINGS: 9871 citations were identified through database searches and after exclusion of duplicates and of irrelevant citations, 225 study reports were retrieved for full-text screening. 116 studies were subsequently excluded for not meeting the inclusion criteria in terms of study design and characteristics of intervention, and 35 primary studies (5601 participants, mean age 65 years, [SD 11]) reported in 109 peer-reviewed publications were deemed suitable for inclusion. Of these, 17 studies (49%) provided IPD (3431 participants, mean duration 9·5 months) from nine different countries while 18 did not provide IPD data. Risk of bias was judged to be low in most IPD studies (71%). Fewer deaths occurred with testosterone treatment (six [0·4%] of 1621) than placebo (12 [0·8%] of 1537) without significant differences between groups (odds ratio [OR] 0·46 [95% CI 0·17-1·24]; p=0·13). Cardiovascular risk was similar during testosterone treatment (120 [7·5%] of 1601 events) and placebo treatment (110 [7·2%] of 1519 events; OR 1·07 [95% CI 0·81-1·42]; p=0·62). Frequently occurring cardiovascular events included arrhythmia (52 of 166 vs 47 of 176), coronary heart disease (33 of 166 vs 33 of 176), heart failure (22 of 166 vs 28 of 176), and myocardial infarction (10 of 166 vs 16 of 176). Overall, patient age (interaction 0·97 [99% CI 0·92-1·03]; p=0·17), baseline testosterone (interaction 0·97 [0·82-1·15]; p=0·69), smoking status (interaction 1·68 [0·41-6·88]; p=0.35), or diabetes status (interaction 2·08 [0·89-4·82; p=0·025) were not associated with cardiovascular risk.
INTERPRETATION: We found no evidence that testosterone increased short-term to medium-term cardiovascular risks in men with hypogonadism, but there is a paucity of data evaluating its long-term safety. Long-term data are needed to fully evaluate the safety of testosterone.
FUNDING: National Institute for Health Research Health Technology Assessment Programme.
METHODS: A retrospective audit of heart transplant recipients (n = 87) treated with tacrolimus was performed. Relevant data were collected from the time of transplant to discharge. The concordance of tacrolimus dosing and monitoring according to hospital guidelines was assessed. The observed and software-predicted tacrolimus concentrations (n = 931) were compared for the first 3 weeks of oral immediate-release tacrolimus (Prograf) therapy, and the predictive performance (bias and imprecision) of the software was evaluated.
RESULTS: The majority (96%) of initial oral tacrolimus doses were guideline concordant. Most initial intravenous doses (93%) were lower than the guideline recommendations. Overall, 36% of initial tacrolimus doses were administered to transplant recipients with an estimated glomerular filtration rate of <60 mL/min/1.73 m despite recommendations to delay the commencement of therapy. Of the tacrolimus concentrations collected during oral therapy (n = 1498), 25% were trough concentrations obtained at steady-state. The software displayed acceptable predictions of tacrolimus concentration from day 12 (bias: -6%; 95%confidence interval, -11.8 to 2.5; imprecision: 16%; 95% confidence interval, 8.7-24.3) of therapy.
CONCLUSIONS: Tacrolimus dosing and monitoring were discordant with the guidelines. The Bayesian forecasting software was suitable for guiding tacrolimus dosing after 11 days of therapy in heart transplant recipients. Understanding the factors contributing to the variability in tacrolimus pharmacokinetics immediately after transplant may help improve software predictions.