Glucose phosphate isomerase of subperiodic Brugia malayi was studied by horizontal starch-gel electrophoresis. Two heterophenotypes, each represented by 3 bands of enzyme activity, were found among 38 parasites studied. This finding is attributed to the occurrence of 2 Gpi gene loci.
Duffy phenotypes were determined for 314 Malaysian Orang Asli. The most common gene, Fya, was present in 313; there were no Duffy negative individuals. A previous study found evidence of Plasmodium vivax infection in 5 of 7 Orang Asli reported to be of the Duffy negative genotype. In this study, 5 of the 7 previously tested Orang Asli were retested in triplicate, and each of the 5 was found to be Duffy positive, having the Fya gene and a phenotype of Fy (a + b-).
1. A total of 8 samples from three natural populations and a laboratory strain of Aedes albopictus were analysed for glycerol-3-phosphate dehydrogenase phenotypes by means of horizontal starch-gel electrophoresis. 2. The electrophoretic phenotypes were governed by three codominant Gpd alleles. 3. There was low variability, with the heterozygosity in the variable samples ranging from 0.02 to 0.12. 4. The commonest allele in all the population samples was GpdB which encoded an electrophoretic band with intermediate mobility. 5. There was no temporal or spatial variation.
Genetic variation of orosomucoid (ORM) in the genus Macaca was investigated. Plasma samples were subjected to isoelectric focusing in a pH range of 4-6.5, followed by immunoprinting with anti-human ORM antibodies. A total of 25 alleles were identified in 231 Asian macaques belonging to 13 species from 23 populations and 22 members belonging to a family of M. fascicularis. Family data presented evidence for a codominant mode of inheritance with multi-alleles at a single autosomal locus. A population study revealed enormous intra- and interspecies variations. The heterozygosity values varied from 0.855 in M. fascicularis (Malaysia) to 0.000 in M. radiata (India), M. silenus (India) and M. arctoides (Malaysia).
1. Three natural populations and a laboratory strain of Aedes albopictus were analysed for glucose phosphate isomerase by means of horizontal starch-gel electrophoresis. 2. The electrophoretic phenotypes were governed by five codominant Gpi alleles. 3. The commonest allele in all the four population samples was GpiC which encoded an electrophoretic band with intermediate mobility. 4. The distributions of GPI phenotypes were in accordance with Hardy-Weinberg expectations. 5. The four population samples could be differentiated by the presence of a unique Gpi allele or the absence of a particular Gpi allele.
The simultaneous expression of both lymphoid and myeloid phenotypic features in acute leukaemia is rare. We report 3 cases of biphenotypic hybrid acute leukaemia seen in our institution. All 3 patients achieved remission with treatment for acute lymphoblastic leukaemia but two subsequently relapsed while on treatment. The hybrid acute leukaemias are important areas for further research both for delineation of basic biology and choice of optimal treatment.
A total of 870 subjects comprising 524 Chinese (from different dialect groups), 231 Malays and 115 Tamil Indians were investigated for the distribution of haptoglobin types and ABO blood groups. Haptoglobins were typed by PAG electrophoresis using discontinuous buffer system. The frequencies of Hp,1 Hp2 and Hp0 were found to be 0.330, 0.670 and 0.029 in Chinese; 0.298, 0.702 and 0.004 in Malays; and 0.167, 0.833 and 0.009 in Indians. The Hainanese had the highest frequency of Hp1 (0.375) followed by Cantonese (0.348), Teochew (0.333) and Hakkas (0.288). The distribution of all the phenotypes of haptoglobin was at equilibrium in all the population groups studied. No association of ABO blood groups was detected with the haptoglobin types. However, there was an excess of AB blood group in persons carrying Hp2 compared with those with Hp1.
A bnormal variants of plasma cholinesterase (ChE, EC. 3.1.1.8) are a rarity in this region and to date there is no reported case of suxamethonium sensitivity in the Malaysian population. We now report a case of a Malaysian Indian patient who received suxamethonium, developed prolonged apnoea and on investigation was found to be a homozygote for the silent gene. His family was screened for abnormal variants of plasma cholinesterase. The results are discussed.
In a study of Malaysians of different racial groups, 1,510 sera (908 from Malays, 371 from Chinese and 231 from Indians) were identified for their protease inhibitor (Pi) types. The gene frequencies for the alleles PiM, PiS and PiX in Malays were, respectively, 0.979, 0.015, and 0.007. In Chinese, the frequencies were 0.981, 0.019 and 0.000, and in Indians they were 0.976, 0.24, and 0.000. It is interesting that the usually rare PiX type is found in appreciable frequency in the Malays. Two different types with unusual behavior and obscure origin were also found.
1. Debrisoquine hydroxylation phenotyping was carried out in 97 Chinese and 97 Malay healthy volunteers. 2. No poor metabolizer was found in the Chinese population. Using a metabolic ratio antimode of 10.0, two poor metabolizers were present amongst the Malays studied.
Several studies on birds have proposed that a lack of invertebrate prey in urbanized areas could be the main cause for generally lower levels of breeding success compared to rural habitats. Previous work on house sparrows Passer domesticus found that supplemental feeding in urbanized areas increased breeding success but did not contribute to population growth. Here, we hypothesize that supplementary feeding allows house sparrows to achieve higher breeding success but at the cost of lower nestling quality. As abundant food supplies may permit both high- and low-quality nestlings to survive, we also predict that within-brood variation in proxies of nestling quality would be larger for supplemental food broods than for unfed broods. As proxies of nestling quality, we considered feather corticosterone (CORT f), body condition (scaled mass index, SMI), and tarsus-based fluctuating asymmetry (FA). Our hypothesis was only partially supported as we did not find an overall effect of food supplementation on FA or SMI. Rather, food supplementation affected nestling phenotype only early in the breeding season in terms of elevated CORT f levels and a tendency for more variable within-brood CORT f and FA. Early food supplemented nests therefore seemed to include at least some nestlings that faced increased stressors during development, possibly due to harsher environmental (e.g., related to food and temperature) conditions early in the breeding season that would increase sibling competition, especially in larger broods. The fact that CORT f was positively, rather than inversely, related to nestling SMI further suggests that factors influencing CORT f and SMI are likely operating over different periods or, alternatively, that nestlings in good nutritional condition also invest in high-quality feathers.
Familial multiple intestinal atresias is an autosomal recessive disease with or without combined immunodeficiency. In the last year, several reports have described mutations in the gene TTC7A as causal to the disease in different populations. However, exact correlation between different genotypes and various phenotypes are not clear. In this study, we report identification of novel compound heterozygous mutations in TTC7A gene in a Malay girl with familial multiple intestinal atresias and severe combined immunodeficiency (MIA-SCID) by whole exome sequencing. We found two mutations in TTC7A: one that destroyed a putative splicing acceptor at the junction of intron 17/exon 18 and one that introduced a stop codon that would truncate the last two amino acids of the encoded protein. Reviewing the recent reports on TTC7A mutations reveals correlation between the position and nature of the mutations with patient survival and clinical manifestations. Examination of public databases also suggests carrier status for healthy individuals, making a case for population screening on this gene, especially in populations with suspected frequent founder mutations.
Coral reefs are some of the most important and ecologically diverse marine environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically within coral cells. Efforts to understand the relationship between alga and coral have been greatly hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are expressed and confer the expected phenotypes. Genetically modified cultures have been grown for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that cells continue to divide after transformation and that the transformation is stable. This is the first report of stable chloroplast transformation in dinoflagellate algae.
In the past decade, nanomedicine research has provided us with highly useful agents (nanoparticles) delivering therapeutic drugs to target cancer cells. The present review highlights nanomedicine applications for breast cancer immunotherapy. Recent studies have suggested that tumour necrosis factor (TNF) and its receptor 2 (TNFR2) expressed on breast cancer cells have important functional consequences. This cytokine/receptor interaction is also critical for promoting highly immune-suppressive phenotypes by regulatory T cells (Tregs). This review generally provides a background for nanoparticles as potential drug delivery agents for immunomodulators and further discusses in depth the potential of TNF antagonists delivery to modulate TNF-TNFR2 interactions and inhibit breast cancer progression.
Aldosterone-producing adenoma (APA) is a common curable cause of hypertension. Somatic mutations in five genes (KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1) have been found to cause the excess aldosterone production of two thirds of APAs [1-4]. KCNJ5 mutant APAs, the most common and largest, had explicit genotype-phenotype relationship - a low protein expression of KCNJ5 relative to their peritumoural zona glomerulosa (ZG) and a zona fasciculata-like composition [5-6]. Conversely for the other genes, controversy arises on whether they have the opposite cell phenotype [4,7-8]. This prospective study aim to to characterize the histopathological-specific mutation spectrum of APAs.
The transitioning of cells during the systemic demise of an organism is poorly understood. Here, we present evidence that organismal death is accompanied by a common and sequential molecular flood of stress-induced events that propagate the senescence phenotype, and this phenotype is preserved in the proteome after death. We demonstrate activation of "death" pathways involvement in diseases of ageing, with biochemical mechanisms mapping onto neurological damage, embryonic development, the inflammatory response, cardiac disease and ultimately cancer with increased significance. There is sufficient bioavailability of the building blocks required to support the continued translation, energy, and functional catalytic activity of proteins. Significant abundance changes occur in 1258 proteins across 1 to 720 h post-mortem of the 12-week-old mouse mandible. Protein abundance increases concord with enzyme activity, while mitochondrial dysfunction is evident with metabolic reprogramming. This study reveals differences in protein abundances which are akin to states of stress-induced premature senescence (SIPS). The control of these pathways is significant for a large number of biological scenarios. Understanding how these pathways function during the process of cellular death holds promise in generating novel solutions capable of overcoming disease complications, maintaining organ transplant viability and could influence the findings of proteomics through "deep-time" of individuals with no historically recorded cause of death.
Identifying certain species of Dermacentor ticks in Malaysia is challenging as there is no comprehensive work on their systematics and lack of specific taxonomic keys. In this study, we described and characterized D. steini ticks collected from a forest reserve in the vicinity of the Forest Research Institute of Malaysia using integrated phenotypic and genotypic traits. In total two males and three females of questing D. steini ticks were morphologically identified using specific illustrated taxonomic keys based on their special characters. Further confirmation and characterization of the tick species were then examined using PCR, followed by sequencing partial mitochondrial 16S rDNA gene (mt-rrs). Clustering analysis based on mt-rrs was carried out by constructing neighbor-joining tree topology to clarify the genetic variation of local D. steini. Based on external morphological characterizations, all ticks were successfully identified down to the species as adult D. steini. The molecular traits based on phylogenetic tree provide very strong support for the monophyletic clade of D. steini including high percentages of similarity (97-100%) with available sequences in GenBank. Furthermore, a low intraspecific variation (4%) among the species of D. steini was observed but it was genetically different from other Dermacentor species with high interspecific value (8-15%). These findings produced the first genotypic data of D. steini using 16S rDNA gene which confirmed the presence of this species in Malaysia. Moreover, this study supports the taxonomic status of local D. steini and adds to the knowledge of accurate identification of ticks.
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide, and its incidence is on the rise. A small fraction of cancer stem cells was identified within the tumour bulk, which are regarded as cancer-initiating cells, possess self-renewal and propagation potential, and a key driver for tumour heterogeneity and disease progression. Cancer heterogeneity reduces the overall efficacy of chemotherapy and contributes to treatment failure and relapse. The cell-surface and subcellular biomarkers related to breast cancer stem cell (BCSC) phenotypes are increasingly being recognised. These biomarkers are useful for the isolation of BCSCs and can serve as potential therapeutic targets and prognostic tools to monitor treatment responses. Recently, the role of noncoding microRNAs (miRNAs) has extensively been explored as novel biomarker molecules for breast cancer diagnosis and prognosis with high specificity and sensitivity. An in-depth understanding of the biological roles of miRNA in breast carcinogenesis provides insights into the pathways of cancer development and its utility for disease prognostication. This review gives an overview of stem cells, highlights the biomarkers expressed in BCSCs and describes their potential role as prognostic indicators.
Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18-33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10-16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans.