To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro.
Centella asiatica has a reputation to restore declining cognitive function in traditional medicine. To date, only a few compounds that show enhancing learning and memory properties are available. Therefore, the present study investigates the effects of for acute administration of asiatic acid (A-A) isolated from Centella asiatica administration on memory and learning in male Spraque-Dawley rats.
Oxidative stress plays a crucial role in the development of diabetic complications. The aims of this study were to investigate whether honey could reduce hyperglycemia and ameliorate oxidative stress in kidneys of streptozotocin-induced diabetic rats.
This study examined the effect of renal sympathetic innervation on adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction in Wistar-Kyoto (WKY) rats.
ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa Korth (ketum) is widely used in Malaysia as a medicinal agent for treating diarrhea, worm infestations and also acts as an analgesic and antipyretic.
AIM: The aim of the study is to determine the acute toxicity of Mitragyna speciosa Korth standardized methanol extract in vivo in 4-weeks-old Sprague-Dawley rats.
METHODOLOGY: Rats were orally administrated single dose of 100, 500 and 1000 mg/kg Mitragyna speciosa Korth standardized methanol extract and the control group received 430 mg/kg of morphine orally. There were 10 rats in each group. All animals were sacrificed after 14 days of treatment. Eight parameters were tested: cage side observation, body weight measurement, food and water consumption, blood pressure, absolute and relative organ weight, hematology, biochemical analysis and histopathology, to look for evidence of toxicity.
RESULT: No mortality was noted after 14 days of treatment. In general, behavior, food and water consumption, hematological studies and organ weights showed no significant changes. The standardized methanol extraction of Mitragyna speciosa Korth increased rat blood pressure (systolic: 147.4+/-1.01, 131.64+/-4.94 and 137.8+/-4.46) after an hour of 100, 500 and 1000 mg/kg doses, respectively. Biochemical studies showed significant elevation of ALT, AST, albumin, triglycerides, cholesterol and albumin (p>0.05), at all levels of doses. But, nephrotoxicity evidenced by elevated creatinine was seen only at a dose of 1000 mg/kg. Histological examination showed congestion of sinusoids, hemorrhage hepatocytes, fatty change, centrilobular necrosis and increased number of Kuppfer cells in the liver of all Mitragyna speciosa Korth standardized methanol extract treated groups.
CONCLUSION: Oral administration of standardized methanolic extraction of Mitragyna speciosa Korth resulted in increasing rat blood pressure after an hour of drug administration. The highest dose of extract also induced acute severe hepatotoxicity and mild nephrotoxicity. However, Mitragyna speciosa Korth shows no effects on body weight, food and water consumption, absolute and relative organ weight and also hematology parameters.
The present investigation was carried out to evaluate the safety of standardised 50% ethanol extract of Orthosiphon stamineus plant by determining its potential toxicity after acute and subchronic administration in rats.
Acidosis modulates physiologic and pathophysiologic processes but the mechanism of acidotic vasodilatation remains unclear. We therefore explored this in aortic rings from normal and streptozotocin-induced diabetic Sprague-Dawley rats. Phenylephrine (PE)-induced contraction in endothelium-intact and -denuded rings were recorded under normal and acidotic pH with or without drug probes. Acidosis exerted a relaxant effect in endothelium-intact and -denuded euglycaemic and diabetic tissues. l-NAME or methylene blue partially inhibited acidotic relaxation in these endothelium-intact but not the -denuded tissues, with greater inhibition in the diabetic tissues, indicating that acidosis induces relaxation by endothelium-dependent and -independent mechanisms, the former being EDNO-cGMP mediated. Indomethacin had no effect on the tissues, indicating that cyclooxygenase products are neither involved in acidosis-induced vasodilatation nor in the modulation of phenylephrine-contraction. In euglycaemic tissues under normal pH, no K(+) channel blocker altered phenylephrine-contraction, but all (except glibenclamide) enhanced diabetic tissue contraction, indicating that normally, these channels (K(ir), K(V), BK(Ca), K(ATP)) do not modulate phenylephrine-contraction, but they (except K(ATP)) are expressed in diabetes where they attenuate phenylephine-induced contraction and modulate acidosis. Only the K(ir) channel modulates acidotic relaxation in euglycaemic tissues. Only tetraethylammonium and iberiotoxin enhanced phenylephrine-induced contraction in endothelium-denuded diabetic tissues indicating that BK(Ca) attenuates phenylephrine-contraction and that acidotic relaxation in this condition is modulated by a tetraethylammonium-sensitive mechanism. In conclusion, acidosis causes vasodilatation in normal and diabetic tissues via endothelium-dependent and -independent mechanisms differentially modulated by a combination of a NO-cGMP process and K(+) channels, some of which are dormant in the normal state but activated in diabetes mellitus.
Orthosiphon stamineus Benth., which is used as a gastroprotective herbal remedy in Malaysia, was assessed for its anti-ulcerogenic activity against ethanol-induced ulcers in rats. Fifty percent methanol was used to extract the oven-dried O. stamineus leaves. The extract was then lyophilized with a rotary evaporator and freeze-dried. Oral administration of O. stamineus methanolic extract (OSME) (125, 250, 500, and 1,000 mg/kg) was found to significantly decrease the ulcer index (P < .01, P < .001, P < .001, and P < .001, respectively). Histological study of a section of the rat stomach also showed a marked improvement in the gastric mucosal damage in groups receiving OSME. In order to further investigate the gastroprotective mechanism of OSME, mucus secretion and lipid peroxidation level were estimated in vitro and ex vivo. OSME exhibited dose-dependent stimulation of mucus secretion (r = 0.718, P < .001) and inhibition of lipid peroxidation in rat gastric mucosal homogenates (both in vitro [r = 0.819, P < .05] and ex vivo [r = 0.981, P < .05]). It was concluded that the gastroprotective mechanism of OSME was partly due to its ability to inhibit lipid peroxidation and stimulate gastric mucus secretion.
Quercetin is a bioflavonoid abundant in onions, apples, tea and red wine and one of the most studied flavonoids. Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. The objective of this study was to investigate the effect of quercetin on stress-induced changes in oxidative biomarkers in the hypothalamus of rats. Adult male Sprague Dawley rats were subjected to forced swimming stress for 45 min daily for 14 days. Effect of quercetin at three different doses (10, 20 and 30 mg/kg body weight) on serum corticosterone and oxidative biomarkers (lipid hydroperoxides, antioxidant enzymes and total antioxidants) was estimated. Swimming stress significantly increased the serum corticosterone and lipid hydroperoxide levels. A significant decrease in total antioxidant levels and super oxide dismutase, glutathione peroxidase and catalase levels was seen in the hypothalamus after stress and treatment with quercetin significantly increased these oxidative parameters and there was a significant decrease in lipid hydroperoxide levels. These data demonstrate that forced swimming stress produced a severe oxidative damage in the hypothalamus and treatment with quercetin markedly attenuated these stress-induced changes. Antioxidant action of quercetin may be beneficial for the prevention and treatment of stress-induced oxidative damage in the brain.
The effect of water extracts of Euphorbia hirta on the histological features and expressions of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in the rat articular cartilage was investigated. Arthritis was induced in rats using Freund's Complete Adjuvant containing heat-killed M. tuberculosis, and treated with water extracts of E. hirta. Paraffin tissue sections of the arthritic joints were evaluated. The extent of cartilage degeneration was found to be greatest in rats treated with the highest dosage of E. hirta, followed by rats in the untreated group. Rats treated with the intermediary and low dosages of Euphorbia hirta showed improved histology. MMP-13 levels were found to be decreased with decreasing dosages of E. hirta. TIMP-1 levels were found to increase with decreasing dosages of E. hirta. MMP-3 levels fluctuated without any appreciable pattern. Low dosages of E. hirta seem to be beneficial in reducing cartilage degeneration in cases of arthritis.
Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of the aqueous extract of Solanum nigrum leaves using various animal models. The extract, at concentrations of 10, 50 and 100%, was prepared by soaking (1:20; w/v) air-dried powdered leaves (20 g) in distilled water (dH2O) for 72 h. The extract solutions were administered subcutaneously in mice/rats 30 min prior to the tests. The extract exhibited significant (P < 0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (P < 0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Overall, these activities occurred in a concentration-dependent manner, except for the 50% concentration of the extract, which was not effective in the abdominal constriction test. In conclusion, the present study demonstrated that S. nigrum leaves possessed antinociceptive, anti-inflammatory and antipyretic effects and thus supported traditional claims of its medicinal uses.
Reactive oxygen species (ROS) play an important role in ageing and age-related neurodegenerative changes including Parkinson's disease (PD). PD is characterized by signs of major oxidative stress and mitochondrial damage in the pars compacta of the substantia nigra. Present study was designed to investigate whether the Centella asiatica extract (CAE) would prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in aged Sprague-Dawley rats. Adult, male Sprague-dawley rats of 300-350 g were divided into control, C. asiatica alone, MPTP alone (20 mg/kg, for 21 days) and MPTP with C. asiatica (300 mg/kg for 21 days) groups. Effect of aqueous extract of C. asiatica on oxidative biomarker levels in corpus striatum and hippocampus homogenate was examined. MPTP-challenged rats elicited a significant increase in lipid hydroperoxides (LPO) (p < 0.01), protein-carbonyl-content (PCC) (p < 0.01) and xanthine oxidase (XO) (p < 0.01) when compared with control rats. There was a significant decrease in total antioxidants (TA) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.01) and catalase (CAT) (p < 0.001) levels with MPTP treatment. Supplementation of CAE reduced LPO and PCC and significantly increased (p < 0.01) TA and antioxidant enzyme levels (p < 0.01) in corpus striatum and hippocampus. These results show that administration of C. asiatica was effective in protecting the brain against neurodegenerative disorders such as Parkinsonism.
Quantitative immunohistochemical methods were used to assess activation of the hypothalamo-hypophyseal-adrenocortical system at the level of its central component - the adenohypophysis - in the growing body during chronic exposure to psychoemotional stressors of different strengths. Sprague-Dawley rats aged 30 days were subjected to "mild" or "severe" immobilization stress for 5 h per day for seven days. Animals were decapitated at the end of the last stress session and the endocrine glands (hypophysis, adrenals) were harvested, weighed, and embedded in paraffin; sections were stained with hematoxylin and eosin, and also immunohistochemically using monoclonal antibodies to adrenocorticotropic hormone (ACTH) and proliferating cell nuclear antigen (PCNA) following by automated image analysis. These studies showed that stress-associated hyperplasia of corticotropocytes in rats of pubertal age was due more to the differentiation of existing immature precursor cells than to cell proliferation.
The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.
The aim of the present study was to determine if paraventricular-spinal vasopressin neurones participate in the sympatho-inhibitory effects of systemically administered atrial natriuretic peptide (ANP) on renal sympathetic nerve activity (RSNA). Experiments were carried out on male Sprague-Dawley rats anesthetized with 1.3 g/kg urethane. Changes in mean arterial pressure (mm Hg), heart rate (beats per minute) and RSNA (%) were measured following intravenous bolus administration of ANP (250 ng, 500 ng and 5 microg). Intrathecal application of selective V 1a receptor antagonist was performed to test for the involvement of supraspinal vasopressin pathways in mediating the effect on sympathetic outflow evoked by intravenous ANP administration. The results obtained demonstrated that both low and high doses of ANP caused renal sympathoinhibition (250 ng; - 7.5 +/- 1%, 500 ng; - 14.2 +/- 1%, 5 microg; - 16.4 +/- 2%), concomitant with vasodilation and bradycardia. After spinal vasopressin receptor blockade, the inhibitory effects of ANP were prevented and there was a small renal sympatho-excitation (250 ng; + 1.7 +/- 0.2%, 500 ng; + 6.1 +/- 0.03%, 5 microg; + 8.0 +/- 0.03%, P < 0.05). Therefore, the renal sympathetic nerve inhibition elicited by circulating ANP is dependent on the efficacy of a well established supraspinal vasopressin pathway. Since supraspinal vasopressin neurones without exception excite renal sympathetic neurones, it is suggested that ANP elicits this effect by activating cardiac vagal afferents that inhibit the spinally projecting vasopressin neurones at their origin in the paraventricular nucleus of the hypothalamus.
A small amount of Methamphetamine (MA) can produce behavioural changes such as euphoria, increased alertness, paranoia, decreased appetite and increased physical activity. In cardiovascular system, it can produce chest pain and hypertension which can result in cardiovascular collapse. In addition, MA causes accelerated heartbeat, elevated blood pressure. It can also cause irreversible damage to blood vessels in the brain. A number of sympathomimetic amines are capable of causing myocardial damage, but the cardio-toxic action of MA has been of particular interest since standardized dosage consistently produces myocardial lesions. As this drug is a choice of many teenagers and young adults, the damage to their health, as well as their future aspects could be greatly affected, therefore more evidence must be sought to convince them the negative root and show them the optimism of recovery and salvation. To clarify the effect of Methamphetamine (MA) on myocardium, 56 male Wister rats aged four weeks were divided equally into MA, Methamphetamine withdrawal (MW), Placebo (P) and Control (C) group were examined following daily intra-peritoneal administration of MA at a dose of 5 mg/kg body weight for 2, 4, 8 and 12 weeks. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including eosinophilic degeneration, atrophy, hypertrophy, disarray, edema, cellular infiltration, myolysis, granulation tissue, fibrosis and vacuolization. On the other hand, the withdrawal group showed evidence of gradual recovery of those myocardial changes. Optimism is therefore generated about possibility of returning towards normal by withdrawing of this drug by the addicts.
Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis.