RESULTS: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin-loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26-28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific.
CONCLUSIONS: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data.
METHODS: Genomic DNA obtained from a 55 years old, self-declared healthy, anonymous male of Malay descent was sequenced. The subject's mother died of lung cancer and the father had a history of schizophrenia and deceased at the age of 65 years old. A systematic, intuitive computational workflow/pipeline integrating custom algorithm in tandem with large datasets of variant annotations and gene functions for genetic variations with pharmacogenomics impact was developed. A comprehensive pathway map of drug transport, metabolism and action was used as a template to map non-synonymous variations with potential functional consequences.
PRINCIPAL FINDINGS: Over 3 million known variations and 100,898 novel variations in the Malay genome were identified. Further in-depth pharmacogenetics analysis revealed a total of 607 unique variants in 563 proteins, with the eventual identification of 4 drug transport genes, 2 drug metabolizing enzyme genes and 33 target genes harboring deleterious SNVs involved in pharmacological pathways, which could have a potential role in clinical settings.
CONCLUSIONS: The current study successfully unravels the potential of personal genome sequencing in understanding the functionally relevant variations with potential influence on drug transport, metabolism and differential therapeutic outcomes. These will be essential for realizing personalized medicine through the use of comprehensive computational pipeline for systematic data mining and analysis.
SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.