Displaying publications 141 - 159 of 159 in total

Abstract:
Sort:
  1. Abdulamir AS, Hafidh RR, Abdulmuhaimen N, Abubakar F, Abbas KA
    BMC Public Health, 2008;8:400.
    PMID: 19055849 DOI: 10.1186/1471-2458-8-400
    Nasopharyngeal carcinoma (NPC) and other head and neck cancer (HNCA) types show a great epidemiological variation in different regions of the world. NPC has multifactorial etiology and many interacting risk factors are involved in NPC development mainly Epstein Barr virus (EBV). There is a need to scrutinize the complicated network of risk factors affecting NPC and how far they are different from that of other HNCA types.
    Matched MeSH terms: Immunoglobulin G/blood
  2. Lau YL, Fong MY
    Exp Parasitol, 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
    Matched MeSH terms: Immunoglobulin G/blood
  3. Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, et al.
    Vaccine, 2006 May 1;24(18):3750-61.
    PMID: 16102875
    In this paper, we describe the development of VCUSM2, a live metabolic auxotroph of Vibrio cholerae O139. Auxotrophy was achieved by mutating a house keeping gene, hemA, that encodes for glutamyl-tRNA reductase, an important enzyme in the C5 pathway for delta-aminolevulenic acid (ALA) biosynthesis, which renders this strain dependent on exogenous ALA for survival. Experiments using the infant mouse and adult rabbit models show that VCUSM2 is a good colonizer of the small intestine and elicits greater than a four-fold rise in vibriocidal antibodies in vaccinated rabbits. Rabbits vaccinated with VCUSM2 were fully protected against subsequent challenge with 1 x 10(11) CFU of the virulent wild type (WT) strain. Experiments using ligated ileal loops of rabbits show that VCUSM2 is 2.5-fold less toxic at the dose of 1 x 10(6) CFU compared to the WT strain. Shedding of VCUSM2 in rabbits were found to occur for no longer than 4 days and its maximum survival rate in environmental waters is 8 days compared to the greater than 20 days for the WT strain. VCUSM2 is thus a potential vaccine candidate against infection by V. cholerae O139.
    Matched MeSH terms: Immunoglobulin G/blood
  4. Lim JC, Goh FY, Sagineedu SR, Yong AC, Sidik SM, Lajis NH, et al.
    Toxicol Appl Pharmacol, 2016 07 01;302:10-22.
    PMID: 27089844 DOI: 10.1016/j.taap.2016.04.004
    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6-8weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1h before and 11h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model.
    Matched MeSH terms: Immunoglobulin G/blood
  5. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Immunoglobulin G/blood
  6. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Microbiol. Immunol., 2003 Oct;18(5):318-22.
    PMID: 12930525
    Mucosal presentation of Actinomyces viscosus results in antigen-specific systemic immune suppression, known as oral tolerance. The aim of the present study was to determine the mechanism by which this oral tolerance is induced. DBA/2 mice were gastrically immunized with A. viscosus. Serum, Peyer's patch (PP) and spleen cells were transferred to syngeneic recipients which were then systemically challenged with the sameiA. viscosus strain. To determine antigen-specificity of cells from gastrically immunized mice, recipients which received immune spleen cells were also challenged with Porphyromonas gingivalis. One week after the last systemic challenge, the delayed type hypersensitivity (DTH) response was determined by footpad swelling and the level of serum IgG, IgA and IgM antibodies to A. viscosus or P. gingivalis measured by an ELISA. No suppression of DTH response or of specific serum antibodies was found in recipients which received serum from gastrically immunized mice. Systemic immune suppression to A. viscosus was observed in recipients which had been transferred with PP cells obtained 2 days but not 4 and 6 days after gastric immunization with A. viscosus. Conversely, suppressed immune response could be seen in recipients transferred with spleen cells obtained 6 days after gastric immunization. The immune response to P. gingivalis remained unaltered in mice transferred with A. viscosus-gastrically immunized cells. The results of the present study suggest that oral tolerance induced by A. viscosus may be mediated by antigen-specific suppressor cells which originate in the PP and then migrate to the spleen.
    Matched MeSH terms: Immunoglobulin G/blood
  7. Suresh K, Mak JW, Yong HS
    PMID: 1818401
    Matched MeSH terms: Immunoglobulin G/blood
  8. Lew MH, Lim RL
    Appl Microbiol Biotechnol, 2016 Jan;100(2):661-71.
    PMID: 26411458 DOI: 10.1007/s00253-015-6953-y
    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study.
    Matched MeSH terms: Immunoglobulin G/blood
  9. Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, et al.
    N Engl J Med, 2019 08 15;381(7):614-625.
    PMID: 31050279 DOI: 10.1056/NEJMoa1900866
    BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, autoimmune, inflammatory disorder that typically affects the optic nerves and spinal cord. At least two thirds of cases are associated with aquaporin-4 antibodies (AQP4-IgG) and complement-mediated damage to the central nervous system. In a previous small, open-label study involving patients with AQP4-IgG-positive disease, eculizumab, a terminal complement inhibitor, was shown to reduce the frequency of relapse.

    METHODS: In this randomized, double-blind, time-to-event trial, 143 adults were randomly assigned in a 2:1 ratio to receive either intravenous eculizumab (at a dose of 900 mg weekly for the first four doses starting on day 1, followed by 1200 mg every 2 weeks starting at week 4) or matched placebo. The continued use of stable-dose immunosuppressive therapy was permitted. The primary end point was the first adjudicated relapse. Secondary outcomes included the adjudicated annualized relapse rate, quality-of-life measures, and the score on the Expanded Disability Status Scale (EDSS), which ranges from 0 (no disability) to 10 (death).

    RESULTS: The trial was stopped after 23 of the 24 prespecified adjudicated relapses, given the uncertainty in estimating when the final event would occur. The mean (±SD) annualized relapse rate in the 24 months before enrollment was 1.99±0.94; 76% of the patients continued to receive their previous immunosuppressive therapy during the trial. Adjudicated relapses occurred in 3 of 96 patients (3%) in the eculizumab group and 20 of 47 (43%) in the placebo group (hazard ratio, 0.06; 95% confidence interval [CI], 0.02 to 0.20; P<0.001). The adjudicated annualized relapse rate was 0.02 in the eculizumab group and 0.35 in the placebo group (rate ratio, 0.04; 95% CI, 0.01 to 0.15; P<0.001). The mean change in the EDSS score was -0.18 in the eculizumab group and 0.12 in the placebo group (least-squares mean difference, -0.29; 95% CI, -0.59 to 0.01). Upper respiratory tract infections and headaches were more common in the eculizumab group. There was one death from pulmonary empyema in the eculizumab group.

    CONCLUSIONS: Among patients with AQP4-IgG-positive NMOSD, those who received eculizumab had a significantly lower risk of relapse than those who received placebo. There was no significant between-group difference in measures of disability progression. (Funded by Alexion Pharmaceuticals; PREVENT ClinicalTrials.gov number, NCT01892345; EudraCT number, 2013-001150-10.).

    Matched MeSH terms: Immunoglobulin G/blood
  10. Teo WH, Nurul AA, Norazmi MN
    Trop Biomed, 2012 Jun;29(2):239-53.
    PMID: 22735846 MyJurnal
    The Plasmodium falciparum serine repeat antigen (SERA) is one of the promising blood-stage malarial vaccine candidates. In this study, recombinant Mycobacterium bovis bacille Calmette-Guerin (rBCG) expressing the 22 kDa protein (SE22) from the 47 kDa Nterminal domain of serine repeat antigen (SERA), generated in favour of mycobacterium codon usage, elicited specific immune response in BALB/c mice with a mixed Th1/Th2 profile. Immunized sera containing high levels of specific IgG1 and IgG2a against the epitope (as determined by ELISA) were reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA). Furthermore, the lymphocyte proliferative response to SE22 antigen from rBCG-immunized mice was higher than that of controls. The expression of intracellular cytokines (IL-2, IL-4 and IFNγ) in CD4+- and CD8+-cells was also enhanced following in-vitro stimulation with SE22. These findings indicate that a rBCG-based vaccine candidate expressing a blood-stage antigen of P. falciparum could enhance both humoral and cellular immune responses, thus paving the way for the rational use of rBCG as a vaccine candidate against malaria.
    Matched MeSH terms: Immunoglobulin G/blood
  11. Ching XT, Fong MY, Lau YL
    Am J Trop Med Hyg, 2017 Jun;96(6):1441-1447.
    PMID: 28719288 DOI: 10.4269/ajtmh.16-0548
    AbstractToxoplasma gondii infects a broad range of warm-blooded hosts, including humans. Important clinical manifestations include encephalitis in immunocompromised patients as well as miscarriage and fetal damage during early pregnancy. Toxoplasma gondii dense granule antigen 2 and 5 (GRA2 and GRA5) are essential for parasitophorous vacuole development of the parasite. To evaluate the potential of GRA2 and GRA5 as recombinant DNA vaccine candidates, these antigens were cloned into eukaryotic expression vector (pcDNA 3.1C) and evaluated in vaccination experiments. Recombinant DNA vaccines constructed with genes encoding GRAs were validated in Chinese hamster ovary cells before evaluation using lethal challenge of the virulent T. gondii RH strain in BALB/c mice. The DNA vaccines of pcGRA2 and pcGRA5 elicited cellular-mediated immune response with significantly higher levels of interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10 (P < 0.05) compared with controls. A mixed T-helper cell 1 (Th1)/Th2 response was associated with slightly prolonged survival. These findings provide evidence that DNA vaccination with GRA2 and GRA5 is associated with Th1-like cell-mediated immune responses. It will be worthwhile to construct recombinant multiantigen combining full-length GRA2 or/and GRA5 with various antigenic proteins such as the surface antigens and rhoptry antigens to improve vaccination efficacy.
    Matched MeSH terms: Immunoglobulin G/blood
  12. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
    Matched MeSH terms: Immunoglobulin G/blood
  13. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, et al.
    Emerg Infect Dis, 2006 Feb;12(2):235-40.
    PMID: 16494748
    During January and February 2001, an outbreak of febrile illness associated with altered sensorium was observed in Siliguri, West Bengal, India. Laboratory investigations at the time of the outbreak did not identify an infectious agent. Because Siliguri is in close proximity to Bangladesh, where outbreaks of Nipah virus (NiV) infection were recently described, clinical material obtained during the Siliguri outbreak was retrospectively analyzed for evidence of NiV infection. NiV-specific immunoglobulin M (IgM) and IgG antibodies were detected in 9 of 18 patients. Reverse transcription-polymerase chain reaction (RT-PCR) assays detected RNA from NiV in urine samples from 5 patients. Sequence analysis confirmed that the PCR products were derived from NiV RNA and suggested that the NiV from Siliguri was more closely related to NiV isolates from Bangladesh than to NiV isolates from Malaysia. NiV infection has not been previously detected in India.
    Matched MeSH terms: Immunoglobulin G/blood
  14. Lee YZ, Shaari K, Cheema MS, Tham CL, Sulaiman MR, Israf DA
    Eur J Pharmacol, 2017 Feb 15;797:53-64.
    PMID: 28089919 DOI: 10.1016/j.ejphar.2017.01.011
    2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
    Matched MeSH terms: Immunoglobulin G/blood
  15. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Immunoglobulin G/blood
  16. Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA, Whitt MA, et al.
    Virol J, 2013 Dec 13;10:353.
    PMID: 24330654 DOI: 10.1186/1743-422X-10-353
    BACKGROUND: Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection.

    METHODS AND RESULTS: Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1.

    CONCLUSIONS: These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.

    Matched MeSH terms: Immunoglobulin G/blood
  17. Mathew A, Cheng HM, Sam CK, Joab I, Prasad U, Cochet C
    Cancer Immunol Immunother, 1994 Jan;38(1):68-70.
    PMID: 8299121
    The BamHI Z EBV replication activator (ZEBRA) protein is involved in the switch from latency to productive cycle of Epstein-Barr virus. A recombinant ZEBRA protein was synthesized and assessed in enzyme-linked immunosorbent assay (ELISA) for serum IgG response in nasopharyngeal carcinoma (NPC) patients. In 100 NPC serum samples that were positive for IgA to the EBV viral capsid antigen (VCA), 75% had IgG anti-ZEBRA antibodies. In contrast, only 3/83 (3.6%) serum samples from healthy donors and 2/50 (4%) from other cancers were positive for IgG to ZEBRA. Interestingly, in a selected group of 100 NPC sera negative for IgA to VCA, 25% contained IgG anti-ZEBRA antibodies. This suggests that the ELISA for IgG anti-ZEBRA may also identify earlier cases of NPC not detected by the conventional immunofluorescence test for IgA to VCA.
    Matched MeSH terms: Immunoglobulin G/blood*
  18. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Immunoglobulin G/blood
  19. Sosroseno W, Bird PS, Seymour GJ
    J Periodontal Res, 2009 Aug;44(4):529-36.
    PMID: 18973550 DOI: 10.1111/j.1600-0765.2008.01157.x
    Elevated nitric oxide (NO) has been associated with destructive periodontal disease. The aim of the present study was to test the hypothesis that exogenous NO may inhibit a protective immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in a murine model.
    Matched MeSH terms: Immunoglobulin G/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links