Displaying publications 141 - 160 of 330 in total

Abstract:
Sort:
  1. Chuen OC, Yusoff S
    J Air Waste Manag Assoc, 2012 Mar;62(3):299-306.
    PMID: 22482288
    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
    Matched MeSH terms: Plant Oils/chemistry*
  2. Han NM, May CY
    J Chromatogr Sci, 2012 Mar;50(3):283-6.
    PMID: 22337806 DOI: 10.1093/chromsci/bms002
    Analyses of tocols (tocopherols and tocotrienols) in palm oil have been extensively reported in the past. However, due to the scarcity of individual tocotrienol standards, calibrations have mostly been carried out using only α-tocopherol as standard. Moreover, even if the individual tocotrienols are being used, their reliability is often questioned, because tocotrienols are highly susceptible to oxidation and deterioration. This paper reports on the study of the deterioration rate of individual tocotrienol standards upon storage as well as different calibration methods for the tocols in palm oil.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Ho WW, Ng HK, Gan S
    Bioresour Technol, 2012 Dec;125:158-64.
    PMID: 23026328 DOI: 10.1016/j.biortech.2012.08.099
    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity.
    Matched MeSH terms: Plant Oils/chemistry*
  4. Haron J, Jahangirian H, Silong S, Yusof NA, Kassim A, Moghaddam RR, et al.
    J Oleo Sci, 2012;61(4):189-95.
    PMID: 22450120
    Fatty hydroxamic acids derivatives based on palm kernel oil which are phenyl fatty hydroxamic acids (PFHAs), methyl fatty hydroxamic acids (MFHAs), isopropyl fatty hydroxamic acids (IPFHAs) and benzyl fatty hydroxamic acids (BFHAs) were applied as chelating agent for copper liquid-liquid extraction. The extraction of copper from aqueous solution by MFHAs, PFHAs, BFHAs or IPFHAs were carried out in hexane as an organic phase through the formation of copper methyl fatty hydroxamate (Cu-MFHs), copper phenyl fatty hydroxamate (Cu-PFHs), copper benzyl fatty hydroxamate (Cu-BFHs) and copper isopropyl fatty hydroxamate (Cu-IPFHs). The results showed that the fatty hydroxamic acid derivatives could extract copper at pH 6.2 effectively with high percentage of extraction (the percentages of copper extraction by MFHAs, PFHAs, IPFHs and BFHAs were found to be 99.3, 87.5, 82.3 and 90.2%, respectively). The extracted copper could be quantitatively stripped back into sulphuric acid (3M) aqueous solution. The obtained results showed that the copper recovery percentages from Cu-MFHs, Cu-PFHs, Cu-BFHs and Cu-IPFHs are 99.1, 99.4, 99.6 and 99.9 respectively. The copper extraction was not affected by the presence of a large amount of Mg (II), Ni (II), Al (III), Mn (II) and Co (II) ions in the aqueous solution.
    Matched MeSH terms: Plant Oils/chemistry*
  5. Idris SS, Rahman NA, Ismail K
    Bioresour Technol, 2012 Nov;123:581-91.
    PMID: 22944493 DOI: 10.1016/j.biortech.2012.07.065
    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.
    Matched MeSH terms: Plant Oils/chemistry*
  6. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Boo HC, Abdulkarim SM
    Food Chem, 2012 May 1;132(1):603-12.
    PMID: 26434338 DOI: 10.1016/j.foodchem.2011.10.095
    The main goal of the present work was to assess the mechanism of crystallisation, more precisely the dominant component responsible for primary crystal formations and fat agglomerations. Therefore, DSC results exhibited significant effect on temperature transition; peak sharpness and enthalpy at palm stearin (PS) levels more than 40wt.%. HPLC data demonstrated slight reduction in the content of POO/OPO at PS levels less than 40wt.%, while the excessive addition of PS more than 40wt.% increased significantly PPO/POP content. The pNMR results showed significant drop in SFC for blends containing PS less than 40wt.%, resulting in low SFC less than 15% at body temperature (37°C). Moreover, the values of viscosity (η) and shear stress (τ) at PS levels over 40wt.% expressed excellent internal friction of the admixtures. All the data reported indicate that PPO/POP was the major component of primary nucleus developed. In part, the levels of PS should be less than 40wt.%, if these blends are designed to be used for margarine production.
    Matched MeSH terms: Plant Oils/chemistry*
  7. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
    Matched MeSH terms: Plant Oils/chemistry*
  8. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Jun;102(11):6392-8.
    PMID: 21486692 DOI: 10.1016/j.biortech.2011.03.039
    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.
    Matched MeSH terms: Plant Oils/chemistry*
  9. Yim HS, Chye FY, Heng PY, Ho CW
    Int J Med Mushrooms, 2011;13(4):357-68.
    PMID: 22164766
    The oxidative stability of sunflower oil supplemented with medicinal split gill mushroom, Schizophyllum commune's crude extract (CE), the formic acid (FA) fraction and semipurified subfractions (SF) II and IV were tested, compared to BHA and alpha-tocopherol, by measuring their peroxide value, iodine value, p-anisidine value, thiobarbituric acid-reactive substances, and free fatty acid content. Their total phenolic content (TPC), 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging, and ferric reducing/antioxidant power (FRAP) were also evaluated. FA and CE exhibited highest DPPH* scavenging, while FA and SFIV showed the highest FRAP; TPC was found to be highest in CE, FA, and SFIV. BHA and alpha-tocopherol are more protective in stabilizing the sunflower oil; SFII and SFIV had short-term protective effect in secondary oxidation for 1 year, while CE and FA retarded secondary oxidation and extended the shelf life 1 1/2 years and 2 years, respectively. HPLC-DAD analysis found (+)-catechin in Sch. commune's extracts. Sch. commune's extracts did not show similar retardation of lipid oxidation in sunflower oil as compared to alpha-tocopherol and BHA at the 200 ppm level. However, the higher concentration of Sch. commune's extract that provided the protective effect in stabilizing sunflower oil can be further studied.
    Matched MeSH terms: Plant Oils/chemistry*
  10. Taufiqurrahmi N, Mohamed AR, Bhatia S
    Bioresour Technol, 2011 Nov;102(22):10686-94.
    PMID: 21924606 DOI: 10.1016/j.biortech.2011.08.068
    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.
    Matched MeSH terms: Plant Oils/chemistry*
  11. Jahangirian H, Haron MJ, Silong S, Yusof NA
    J Oleo Sci, 2011;60(6):281-6.
    PMID: 21606615
    Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.
    Matched MeSH terms: Plant Oils/chemistry
  12. Hansen SB, Olsen SI, Ujang Z
    Bioresour Technol, 2012 Jan;104:358-66.
    PMID: 22137753 DOI: 10.1016/j.biortech.2011.10.069
    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.
    Matched MeSH terms: Plant Oils/chemistry*
  13. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;103(1):398-404.
    PMID: 22050840 DOI: 10.1016/j.biortech.2011.09.116
    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.
    Matched MeSH terms: Plant Oils/chemistry
  14. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    Environ Monit Assess, 2012 Sep;184(9):5821-8.
    PMID: 21989900 DOI: 10.1007/s10661-011-2384-0
    In this study, a rapid, specific and sensitive multi-residue method based on acetonitrile extraction followed by dispersive solid-phase extraction (d-SPE) clean-up was implemented and validated for multi-class pesticide residues determination in palm oil for the first time. Liquid-liquid extraction followed by low-temperature precipitation procedure was evaluated in order to study the freezing-out clean-up efficiency to obtain high recovery yield and low co-extract fat residue in the final extract. For clean-up step, d-SPE was carried out using a combination of anhydrous magnesium sulphate (MgSO(4)), primary secondary amine, octadecyl (C(18)) and graphitized carbon black. Recovery study was performed at two concentration levels (10 and 100 ng g(-1)), yielding recovery rates between 74.52% and 97.1% with relative standard deviation values below 10% (n = 6) except diuron. Detection and quantification limits were lower than 5 and 9 ng g(-1), respectively. In addition, soft matrix effects (≤±20%) were observed for most of the studied pesticides except malathion that indicated medium (20-50%) matrix effects. The proposed method was successfully applied to the analysis of suspected palm oil samples.
    Matched MeSH terms: Plant Oils/chemistry*
  15. Khan MA, Ngabura M, Choong TS, Masood H, Chuah LA
    Bioresour Technol, 2012 Jan;103(1):35-42.
    PMID: 22055093 DOI: 10.1016/j.biortech.2011.09.065
    Biosorption potential of mustard oil cake (MOC) for Ni(II) from aqueous medium was studied. Spectroscopic studies showed possible involvement of acidic (hydroxyl, carbonyl and carboxyl) groups in biosorption. Optimum biosorption was observed at pH 8. Contact time, reaction temperature, biosorbent dose and adsorbate concentration showed significant influence. Linear and non-linear isotherms comparison suggests applicability of Temkin model at 303 and 313 K and Freundlich model at 323K. Kinetics studies revealed applicability of Pseudo-second-order model. The process was endothermic and spontaneous. Freundlich constant (n) and activation energy (Ea) values confirm physical nature of the process. The breakthrough and exhaustive capacities for 5 mg/L initial Ni(II) concentration were 0.25 and 4.5 mg/g, while for 10 mg/L initial Ni(II) concentration were 4.5 and 9.5 mg/g, respectively. Batch desorption studies showed maximum Ni(II) recovery in acidic medium. Regeneration studies by batch and column process confirmed reutilization of biomass without appreciable loss in biosorption.
    Matched MeSH terms: Plant Oils/chemistry*
  16. Show KY, Ng CA, Faiza AR, Wong LP, Wong LY
    Water Sci Technol, 2011;64(12):2439-44.
    PMID: 22170839 DOI: 10.2166/wst.2011.824
    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.
    Matched MeSH terms: Plant Oils/chemistry*
  17. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
    Matched MeSH terms: Plant Oils/chemistry
  18. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Oct;101(19):7641-7.
    PMID: 20510608 DOI: 10.1016/j.biortech.2010.04.072
    Thermal decomposition of oil palm fruit press fiber (FPF) with sub/supercritical methanol, ethanol, acetone, and 1,4-dioxane treatments were investigated using a high-pressure autoclave reactor. When FPF was decomposed with methanol, ethanol, and acetone from 483 to 603 K, the highest degree of conversion obtained were 81.5%, 77.8%, and 67.9% while the highest liquid product yield (LP) obtained were 38.0%, 36.9%, and 38.5%, respectively. For the case of 1,4-dioxane, the conversion of FPF increased from 18.30% to 80.00%, while LP yield increased dramatically from 13.30% to 50.90% (consisting of 42.3% bio-oil compounds) when the reaction temperature was increased from 483 to 563 K. However, the conversion of FPF and LP yield decreased to 69.60% and 24.10%, respectively, when the temperature was further increased to 603 K. Comparison between all the solvents, subcritical 1,4-dioxane treatment was found very effective in the degradation of FPF to produce bio-oil component.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Gan S, Ng HK, Ooi CW, Motala NO, Ismail MA
    Bioresour Technol, 2010 Oct;101(19):7338-43.
    PMID: 20435468 DOI: 10.1016/j.biortech.2010.04.028
    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).
    Matched MeSH terms: Plant Oils/chemistry*
  20. Jahangirian H, Haron MJ, Yusof NA, Silong S, Kassim A, Rafiee-Moghaddam R, et al.
    Molecules, 2011 Aug 05;16(8):6634-44.
    PMID: 25134767 DOI: 10.3390/molecules16086634
    Fatty hydroxamic acid derivatives were synthesized using Lipozyme TL IM catalyst at biphasic medium as the palm kernel oil was dissolved in hexane and hydroxylamine derivatives were dissolved in water: (1) N-methyl fatty hydroxamic acids (MFHAs); (2) N-isopropyl fatty hydroxamic acids (IPFHAs) and (3) N-benzyl fatty hydroxamic acids (BFHAs) were synthesized by reaction of palm kernel oil and N-methyl hydroxylamine (N-MHA), N-isopropyl hydroxylamine (N-IPHA) and N-benzyl hydroxylamine (N-BHA), respectively. Finally, after separation the products were characterized by color testing, elemental analysis, FT-IR and 1H-NMR spectroscopy. For achieving the highest conversion percentage of product the optimum molar ratio of reactants was obtained by changing the ratio of reactants while other reaction parameters were kept constant. For synthesis of MFHAs the optimum mol ratio of N-MHA/palm kernel oil = 6/1 and the highest conversion was 77.8%, for synthesis of IPFHAs the optimum mol ratio of N-IPHA/palm kernel oil = 7/1 and the highest conversion was 65.4% and for synthesis of BFHAs the optimum mol ratio of N-BHA/palm kernel oil = 7/1 and the highest conversion was 61.7%.
    Matched MeSH terms: Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links