Displaying publications 141 - 160 of 232 in total

Abstract:
Sort:
  1. Mohd-Aris A, Muhamad-Sofie MHN, Zamri-Saad M, Daud HM, Ina-Salwany MY
    Vet World, 2019 Nov;12(11):1806-1815.
    PMID: 32009760 DOI: 10.14202/vetworld.2019.1806-1815
    Fish diseases are often caused either by bacteria, viruses, fungi, parasites, or a combination of these pathogens. Of these, bacterial fish diseases are considered to be a major problem in the aquaculture industry. Hence, the prevention of such diseases by proper vaccination is one of the integral strategies in fish health management, aimed at reducing the fish mortality rate in the aquaculture farms. Vaccination offers an effective yet low-cost solution to combat the risk of disease in fish farming. An appropriate vaccination regime to prevent bacterial diseases offers a solution against the harmful effects of antibiotic applications. This review discusses the role of live-attenuated vaccine in controlling bacterial diseases and the development of such vaccines and their vaccination strategy. The current achievements and potential applications of live-attenuated and combined vaccines are also highlighted. Vaccine development is concluded to be a demanding process, as it must satisfy the requirements of the aquaculture industry.
    Matched MeSH terms: Parasites
  2. Cheong FW, Dzul S, Fong MY, Lau YL, Ponnampalavanar S
    Acta Trop, 2020 Jun;206:105454.
    PMID: 32205132 DOI: 10.1016/j.actatropica.2020.105454
    Transmission of Plasmodium vivax still persist in Malaysia despite the government's aim to eliminate malaria in 2020. High treatment failure rate of chloroquine monotherapy was reported recently. Hence, parasite drug susceptibility should be kept under close monitoring. Mutation analysis of the drug resistance markers is useful for reconnaissance of anti-malarial drug resistance. Hitherto, information on P. vivax drug resistance marker in Malaysia are limited. This study aims to evaluate the mutations in four P. vivax drug resistance markers pvcrt-o (putative), pvmdr1 (putative), pvdhfr and pvdhps in 44 isolates from Malaysia. Finding indicates that 27.3%, 100%, 47.7%, and 27.3% of the isolates were carrying mutant allele in pvcrt-o, pvmdr1, pvdhfr and pvdhps genes, respectively. Most of the mutant isolates had multiple point mutations rather than single point mutation in pvmdr1 (41/44) and pvdhfr (19/21). One novel point mutation V111I was detected in pvdhfr. Allelic combination analysis shows significant strong association between mutations in pvcrt-o and pvmdr1 (X2 = 9.521, P < 0.05). In the present study, 65.9% of the patients are non-Malaysians, with few of them arrived in Malaysia 1-2 weeks before the onset of clinical manifestations, or had previous history of malaria infection. Besides, few Malaysian patients had travel history to vivax-endemic countries, suggesting that these patients might have acquired the infections during their travel. All these possible imported cases could have placed Malaysia in a risk to have local transmission or outbreak of malaria. Six isolates were found to have mutations in all four drug resistance markers, suggesting that the multiple-drugs resistant P. vivax strains are circulating in Malaysia.
    Matched MeSH terms: Parasites
  3. Ismail Elshahawy, Ashraf Elgoniemy
    Sains Malaysiana, 2018;47:9-18.
    The present study was designed to study the enteric parasites infection in domestic rabbits in Upper Egypt and its impact on their health. A total of 298 faecal samples were collected from different farms in Upper Egypt. Each faecal sample was screened for parasitic isolation during May 2011- October 2012. Furthermore, The Eimeria species from samples containing isolated and sporulated oocysts were morphologically identified under microscope. Additionally, the Sheather's sugar flotation and Modified Zeihl Neelsen techniques were used to detect the Cryptosporidium species oocyst. According to results of the present study, the overall enteric parasite infections in rabbits was 68.12%, with 5.7% samples were found to be positive for helminths (P. ambiguus) and 49% were found to harbour various species of protozoa (Eimeria spp. and Cryptosporidium oocysts). Influences of age, sex and breed on the prevalence were recorded. Also, there was strong significant seasonal trends in the prevalence of the recovered parasites. Eight species of Eimeria were detected. Concurrent infection with two to eight Eimeria species occurred most frequently. Cryptosporidium oocyst was detected in 45 rabbits (15.1%). To the best of author's knowledge, this the first report of E. piriformis and Cryptosporidium species in rabbits in Egypt. Histopathological changes were indicative of inflammatory reactions brought about by parasitic infection with Eimeria species and its consequent irritating effects on intestine. The current study showed the characteristics of the prevalence of rabbit enteric parasite infection in Egypt and provided relevant 'baseline' data for assessing the effectiveness of future control strategies against these parasites in Egypt.
    Matched MeSH terms: Parasites
  4. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

    Matched MeSH terms: Parasites
  5. Ng YH, Fong MY, Subramaniam V, Shahari S, Lau YL
    Res Vet Sci, 2015 Dec;103:201-4.
    PMID: 26679818 DOI: 10.1016/j.rvsc.2015.10.009
    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.
    Matched MeSH terms: Parasites
  6. Quintana MDP, Ch'ng JH, Moll K, Zandian A, Nilsson P, Idris ZM, et al.
    Sci Rep, 2018 02 19;8(1):3262.
    PMID: 29459776 DOI: 10.1038/s41598-018-21026-4
    Naturally acquired antibodies to proteins expressed on the Plasmodium falciparum parasitized red blood cell (pRBC) surface steer the course of a malaria infection by reducing sequestration and stimulating phagocytosis of pRBC. Here we have studied a selection of proteins representing three different parasite gene families employing a well-characterized parasite with a severe malaria phenotype (FCR3S1.2). The presence of naturally acquired antibodies, impact on rosetting rate, surface reactivity and opsonization for phagocytosis in relation to different blood groups of the ABO system were assessed in a set of sera from children with mild or complicated malaria from an endemic area. We show that the naturally acquired immune responses, developed during malaria natural infection, have limited access to the pRBCs inside a blood group A rosette. The data also indicate that SURFIN4.2 may have a function at the pRBC surface, particularly during rosette formation, this role however needs to be further validated. Our results also indicate epitopes differentially recognized by rosette-disrupting antibodies on a peptide array. Antibodies towards parasite-derived proteins such as PfEMP1, RIFIN and SURFIN in combination with host factors, essentially the ABO blood group of a malaria patient, are suggested to determine the outcome of a malaria infection.
    Matched MeSH terms: Parasites
  7. Arifin N, Yunus MH, Nolan TJ, Lok JB, Noordin R
    Am J Trop Med Hyg, 2018 04;98(4):1165-1170.
    PMID: 29436335 DOI: 10.4269/ajtmh.17-0697
    Strongyloides stercoralis is a human parasite that can cause a long-term infection. In immunosuppressed patients, strongyloidiasis may be fatal when there is overwhelming autoinfection resulting in the migration of large numbers of larvae through many organs. Definitive diagnosis is still a challenge, and a combination of symptoms, microscopic identification, and serology test results are often used to arrive at a clinical decision. However, intermittent larval excretion, low parasite burden, and occult infections are challenges with parasitological diagnosis of infection with S. stercoralis. Meanwhile, serologic tests using immunoglobulin G and parasite antigen extract have problems of cross-reactivity with other helminthic infections. Recombinant antigen-based serodiagnosis is a good alternative to overcome the laboratory diagnostic issues. Herein, we report on the isolation of cDNA clone encoding an antigen of potential diagnostic value identified from immunoscreening of a S. stercoralis cDNA library. The translated protein had highest similarity to Strongyloides ratti immunoglobulin-binding protein 1. The recombinant antigen produced, rSs1a, was assessed using western blot and enzyme-linked immunosorbent assay. The latter showed 96% diagnostic sensitivity and 93% specificity; thus, rSs1a has good potential for use in serodiagnosis of human strongyloidiasis.
    Matched MeSH terms: Parasites
  8. Borkhanuddin MH, Goswami U, Cech G, Molnár K, Atkinson SD, Székely C
    Food Waterborne Parasitol, 2020 Sep;20:e00092.
    PMID: 32995584 DOI: 10.1016/j.fawpar.2020.e00092
    This study was a co-operative investigation of myxosporean infections of Notopterus notopterus, the bronze featherback, which is a popular food fish in the South Asian region. We examined fish from Lake Kenyir, Malaysia and the River Ganga, Hastinapur, Uttar Pradesh, India, and observed infections with two myxosporeans: Myxidium cf. notopterum (Myxidiidae) and Henneguya ganapatiae (Myxobolidae), respectively. These species were identified by myxospore morphology, morphometry and host tissue affinity, and the original descriptions supplemented with small-subunit ribosomal DNA sequences and phylogenetic analysis. Free myxospores of M. cf. notopterum were found in the gallbladder, and measured 14.7 ± 0.6 μm long and 6.3 ± 0.6 μm wide; host, tissue and myxospore dimensions overlapped with the type, but differed in morphological details (spore shape, valve cell ridges) and locality (Malaysia versus India). Plasmodia and spores of H. ganapatiae were observed in gills, and myxospores had a spore body 9.7 ± 0.4 μm long, 4.5 ± 0.5 μm wide; sample locality, host, tissue, spore morphology and morphometry matched the original description. Small-subunit ribosomal DNA sequences were deposited in GenBank (M. cf. notopterum MT365527, H. ganapatiae MT365528) and both differed by >7% from congeneric species. Although the pathogenicity and clinical manifestation of myxozoan in humans are poorly understood, consumption of raw fish meat with myxozoan infection was reported to be associated with diarrhea. Identification of current parasite fauna from N. notopterus is an essential first step in assessing pathogen risks to stocks of this important food fish.
    Matched MeSH terms: Parasites
  9. Gopalakrishnan A, Raja K, Trilles JP, Rajkumar M, Rahman MM, Saravanakumar A
    J Parasit Dis, 2017 Mar;41(1):93-96.
    PMID: 28316394 DOI: 10.1007/s12639-016-0756-7
    The bopyrid isopods are common in wildMacrobrachiumspp. but not common in aquaculture condition. This is the first study that reports the parasitizing of bopyrid isopods on the culturedM. malcolmsonii. Bopyrid isopod (Probopyrus buitendijki) was identified in the branchial cavities of the fresh water prawn,M. malcolmsoniifrom grow-out culture pond at Kuriyamangalam, India.Macrobrachium malcolmsoniiis a new host forP. buitendijki. A total of 1323M. malcolmsoniiwere checked for this study. The overall prevalence of the parasitic infestation was reached 46.2 %. The parasitic infection was higher in female (83 %) than in male (3.4 %). Highest prevalence of infestation was found in the median size group (7-8 cm) (58.7 %). Infected females were not berried unlike uninfected prawns. The parasites cause infertility and does not found any organ deformities due to the infestation. The parasite was inversely attached in the gill chamber with no lesion on the gill but the infected branchial chamber became bulged.
    Matched MeSH terms: Parasites
  10. Al-Abd NM, Nor ZM, Al-Adhroey AH, Suhaimi A, Sivanandam S
    PMID: 24298292 DOI: 10.1155/2013/986573
    Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.
    Matched MeSH terms: Parasites
  11. Divis PCS, Hu TH, Kadir KA, Mohammad DSA, Hii KC, Daneshvar C, et al.
    Emerg Infect Dis, 2020 07;26(7):1392-1398.
    PMID: 32568035 DOI: 10.3201/eid2607.190924
    Population genetic analysis revealed that Plasmodium knowlesi infections in Malaysian Borneo are caused by 2 divergent parasites associated with long-tailed (cluster 1) and pig-tailed (cluster 2) macaques. Because the transmission ecology is likely to differ for each macaque species, we developed a simple genotyping PCR to efficiently distinguish between and survey the 2 parasite subpopulations. This assay confirmed differences in the relative proportions in areas of Kapit division of Sarawak state, consistent with multilocus microsatellite analyses. Analyses of 1,204 human infections at Kapit Hospital showed that cluster 1 caused approximately two thirds of cases with no significant temporal changes from 2000 to 2018. We observed an apparent increase in overall numbers in the most recent 2 years studied, driven mainly by increased cluster 1 parasite infections. Continued monitoring of the frequency of different parasite subpopulations and correlation with environmental alterations are necessary to determine whether the epidemiology will change substantially.
    Matched MeSH terms: Parasites
  12. Raja TN, Hu TH, Kadir KA, Mohamad DSA, Rosli N, Wong LL, et al.
    Emerg Infect Dis, 2020 08;26(8):1801-1809.
    PMID: 32687020 DOI: 10.3201/eid2608.200343
    To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013-December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17-65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans.
    Matched MeSH terms: Parasites
  13. Hocking SE, Divis PCS, Kadir KA, Singh B, Conway DJ
    Emerg Infect Dis, 2020 08;26(8):1749-1758.
    PMID: 32687018 DOI: 10.3201/eid2608.190864
    Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia.
    Matched MeSH terms: Parasites
  14. Babamale OA, Opeyemi OA, Bukky AA, Musleem AI, Kelani EO, Okhian BJ, et al.
    Malays J Med Sci, 2020 May;27(3):105-116.
    PMID: 32684811 MyJurnal DOI: 10.21315/mjms2020.27.3.11
    Background: The connection between malaria-associated morbidities and farming activities has not been succinctly reported. This study aimed to address the connectivity between farming activities and malaria transmission.

    Methods: The study took place in the agricultural setting of Nigeria Edu local government (9° N, 4.9° E) between March 2016 and December 2018. A pre-tested structured questionnaire was administered to obtain information on their occupation and malaria infection. Infection status was confirmed with blood film and microscopic diagnosis of Plasmodium falciparum was based on the presence of ring form or any other blood stages. Individuals who are either critically ill or lived in the community less than 3 months were excluded from the study.

    Results: Of the 341 volunteers, 58.1% (52.9% in Shigo and 61.4% in Sista) were infected (parasitaemia density of 1243.7 parasites/μL blood). The prevalence and intensity of infection were higher among farmers (71.3%, 1922.9 parasites/μL blood, P = 0.005), particularly among rice farmers (2991.6 parasites/μL blood) compared to non-farmer participants. The occurrence and parasite density follow the same pattern for sex and age (P < 0.05). Children in the age of 6 to 10 years (AOR: 2.168, CI: 1.63-2.19) and ≥ 11 years (AOR: 3.750, CI: 2.85-3.80) groups were two-and four-fold more likely to be infected with malaria. The analysis revealed that the proximity of bush and stagnant water to the farmer (73.9%, AOR: 3.242, CI: 2.57-3.61) and non-farmer (38.1%, AOR: 1.362, CI: 1.25-1.41) habitations influence malaria transmission.

    Conclusion: This study highlights farming activities as a risk factor for malaria infection in agro-communities. Integrated malaria control measures in agricultural communities should therefore include water and environmental management practices.

    Matched MeSH terms: Parasites
  15. Wan Omar A, Sulaiman O, Yusof S, Ismail G, Fatmah MS, Rahmah N, et al.
    Malays J Med Sci, 2001 Jul;8(2):19-24.
    PMID: 22893756
    We have recently reported that a dipstick colloidal dye immunoassay (DIA) that detect parasite antigens in human serum is sensitive and specific for the diagnosis of active infection of lymphatic filariasis. Rabbit polyclonal antibodies (RbBmCAg) labelled with a commercial dye, palanil navy blue was used to detect filarial antigenemia among Indonesian and Bangladeshi immigrant workers (N= 630) at oil palm estates at Hulu Trengganu District, Peninsular Malaysia. Microfilaremia with Brugia malayi were detected in 51 (8.10 %) individuals, of which 42 (6.67 %) were among the Indonesians and 9 (1.98 %) among the Bangladeshis. Microfilaremia with Wuchereria bancrofti were detected in 33 (5.24 %) individuals of which 15 (2.38 %) were among the Indonesians and 18 (2.86 %) among the Bangladeshis workers. The DIA detected 96 (15.24 %) antigenemic cases which comprise of all the microfilaremic cases and 15 (2.38 %) amicrofilaremic cases. The amicrofilaremic cases with filarial antigenemia consisted of 9 (1. 43 %) Indonesians and 6 (0.95%) Bangladeshis. We have used 6 ul of the RbBmCAg and diluted (1:10) patients' sera per dipstick which make the DIA reagent conservative. The DIA is a rapid test and can be read in approximate 2 hours.. Additionally, coloured dots developed in the DIA can be qualitatively assessed visually for intensity. The DIA does not require sophisticated equipment or radioactivity, and therefore suitable for field application.
    Matched MeSH terms: Parasites
  16. Ludin CM, Radzi JM, Maimunah A
    Malays J Med Sci, 2003 Jul;10(2):87-90.
    PMID: 23386803 MyJurnal
    The present study, analyzes data from 1991 to 2000 for rotavirus infection among children with diarrhoea and acute gastroenteritis admitted to the Hospital Universiti Sains Malaysia (HUSM). The Latex Slide Agglutination Test was used for the detection of rotavirus antigens. Out of 1097 stool samples tested, 207 samples or 18.8 % were found to be positive for rotavirus. The infection occurred most frequently in infants and young children from 6 months to 2 years of age. The infection was recorded highest in the year of 2000 - 48 cases (34.1%) and the lowest in 1999 - 5 cases (6.6%). Stool examination and cultures from the rotavirus positive samples revealed no parasites and enteropathogenic bacteria. These observations suggested that rotavirus could still remain as an important agent causing diarrhoea and gastroenteritis in young children admitted to HUSM.
    Matched MeSH terms: Parasites
  17. Prathap K, Lau KS, Bolton JM
    Am J Trop Med Hyg, 1969 Jan;18(1):20-7.
    PMID: 5812657
    Matched MeSH terms: Parasites*
  18. Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ
    Mol Ecol, 2018 02;27(4):860-870.
    PMID: 29292549 DOI: 10.1111/mec.14477
    Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.
    Matched MeSH terms: Parasites/genetics*
  19. Marin-Mogollon C, van de Vegte-Bolmer M, van Gemert GJ, van Pul FJA, Ramesar J, Othman AS, et al.
    Sci Rep, 2018 10 08;8(1):14902.
    PMID: 30297725 DOI: 10.1038/s41598-018-33236-x
    Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P. falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P. falciparum mutants (PfΔp230p) lacking P230p expression. The PfΔp230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro. In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P. falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
    Matched MeSH terms: Parasites/genetics
  20. Kagaya W, Gitaka J, Chan CW, Kongere J, Md Idris Z, Deng C, et al.
    Sci Rep, 2019 12 13;9(1):19060.
    PMID: 31836757 DOI: 10.1038/s41598-019-55437-8
    Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control.
    Matched MeSH terms: Parasites/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links