Displaying publications 161 - 180 of 961 in total

Abstract:
Sort:
  1. Nasir NM, Rahmani M, Shaari K, Ee GC, Go R, Kassim NK, et al.
    Molecules, 2011 Oct 25;16(11):8973-80.
    PMID: 22027953 DOI: 10.3390/molecules16118973
    The air-dried powdered stem bark of Calophyllum nodusum (Guttiferea) collected from Sandakan (Sabah, Malaysia), was extracted sequentially with hexane, chloroform and methanol. The solvents were removed by rotary evaporator to give dark viscous extracts. Detailed and repeated chromatographic separation of the extracts lead to isolation of two new xanthones, identified as nodusuxanthone and trapezifolixanthone A. Other common terpenoids such as betulinic acid, lupeol, stigmasterol and friedelin were also isolated from the extracts and identified. The structures of the compounds were established by detailed spectral analysis and comparison with previously reported data.
  2. Moghaddam SS, Jaafar HB, Aziz MA, Ibrahim R, Rahmat AB, Philip E
    Molecules, 2011 Oct 25;16(11):8930-44.
    PMID: 22027950 DOI: 10.3390/molecules16118930
    The study was couducted to investigate the effects of gamma irradiation and CO₂ on flavonoid content and leaf gas exchange in C.asiatica. For flavonoid determination, the design was a split split plot based on Randomized Complete Block Design (RCBD). For other parameters, the designs were split plots. Statistical tests revealed significant differences in flavonoid contents of Centella asiatica leaves between different growth stages and various CO₂ treatments. CO₂ 400, G20 (400 = ambient CO₂; G20 = Plants exposed to 20 Gy) showed 82.90% higher total flavonoid content (TFC) in the 5th week than CO₂ 400 as control at its best harvest time (4th week). Increasing the concentration of CO₂ from 400 to 800 μmol/mol had significant effects on TFC and harvesting time. In fact, 800 μmol/mol resulted in 171.1% and 66.62% increases in TFC for control and irradiated plants, respectively. Moreover, increasing CO₂ concentration reduced the harvesting time to three and four weeks for control and irradiated plants, respectively. Enhancing CO₂ to 800 µmol/mol resulted in a 193.30% (CO₂ 800) increase in leaf biomass compared to 400 µmol/mol and 226.34% enhancement in irradiated plants (CO₂ 800, G20) [800 = Ambient CO₂; G20 = Plants exposed to 20 Gy] than CO₂ 400, G20. In addition, the CO₂ 800, G20 had the highest amount of flavonoid*biomass in the 4th week. The results of this study indicated that all elevated CO₂ treatments had higher PN than the ambient ones. The findings showed that when CO₂ level increased from 400 to 800 µmol/mol, stomatal conductance, leaf intercellular CO₂ and transpiration rate had the tendency to decrease. However, water use efficiency increased in response to elevated CO₂ concentration. Returning to the findings of this study, it is now possible to state that the proposed method (combined CO₂ and gamma irradiation) has the potential to increase the product value by reducing the time to harvest, increasing the yield per unit area via boosting photosynthesis capacity, as well as increasing biochemicals (flavonoids) per gram DM.
  3. Palanisamy UD, Sivanathan M, Radhakrishnan AK, Haleagrahara N, Subramaniam T, Chiew GS
    Molecules, 2011 Jul 05;16(7):5709-19.
    PMID: 21730920 DOI: 10.3390/molecules16075709
    Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.
  4. Mehrnoush A, Sarker MZ, Mustafa S, Yazid AM
    Molecules, 2011 Oct 10;16(10):8419-27.
    PMID: 21986520 DOI: 10.3390/molecules16108419
    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.
  5. Kee CH, Ariffin A, Awang K, Noorbatcha I, Takeya K, Morita H, et al.
    Molecules, 2011 Aug 25;16(9):7267-87.
    PMID: 21869754 DOI: 10.3390/molecules16097267
    The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions profoundly modulate the electronics of the stilbene olefinic and NH groups and the corresponding radical cations in ways that influence the efficiency of the cyclization due presumably to conformational and stereoelectronic factors. For example, isobutyramido- stilbene undergoes FeCl(3) promoted cyclization to produce only indoline, while n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline.
  6. Ee GC, Teh SS, Mah SH, Rahmani M, Taufiq-Yap YH, Awang K
    Molecules, 2011 Aug 25;16(9):7249-55.
    PMID: 21869752 DOI: 10.3390/molecules16097249
    Our ongoing investigations on the stem bark of Mesua beccariana afforded a novel cyclodione coumarin, beccamarin, together with two known xanthones, mesuarianone, mesuasinone, two anthraquinones, 4-methoxy-1,3,5-trihydroxy-anthraquinone and 2,5-dihydroxy-1,3,4-trimethoxyanthraquinone and one coumarin, mammea A/AB. The structures were elucidated by 1D and 2D NMR and MS techniques.
  7. Malek SN, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, et al.
    Molecules, 2011 May 31;16(6):4539-48.
    PMID: 21629182 DOI: 10.3390/molecules16064539
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
  8. Mohamed EA, Mohamed AJ, Asmawi MZ, Sadikun A, Ebrika OS, Yam MF
    Molecules, 2011 May 04;16(5):3787-801.
    PMID: 21544041 DOI: 10.3390/molecules16053787
    Preliminary investigations were carried out to evaluate the antidiabetic effects of the leaves of O. stamineus extracted serially with solvents of increasing polarity (petroleum ether, chloroform, methanol and water); bioassay-guided purification of plant extracts using the subcutaneous glucose tolerance test (SbGTT) was also carried out. Only the chloroform extract, given at 1 g/kg body weight (b.w.), significantly reduced (P < 0.05) the blood glucose level of rats loaded subcutaneously with 150 mg/kg (b.w.) glucose. The active chloroform extract of O. stamineus was separated into five fractions using a dry flash column chromatography method. Out of the five fractions tested, only chloroform fraction 2 (Cƒ2), at the dose of 1 g/kg (b.w.) significantly inhibited (P < 0.05) blood glucose levels in SbGTT. Active Cƒ2 was split into two sub-fractions Cƒ2-A and Cƒ2-B, using a dry flash column chromatography method. The activities Cƒ2-A and Cƒ2-B were investigated using SbGTT, and the active sub-fraction was then further studied for anti-diabetic effects in a streptozotocin-induced diabetic rat model. The results clearly indicate that Cƒ2-B fraction exhibited a blood glucose lowering effect in fasted treated normal rats after glucose-loading of 150 mg/kg (b.w.). In the acute streptozotocin-induced diabetic rat model, Cƒ2-B did not exhibit a hypoglycemic effect on blood glucose levels up to 7 hours after treatment. Thus, it appears that Cƒ2-B functions similarly to metformin, which has no hypoglycemic effect but demonstrates an antihyperglycemic effect only in normogycemic models. The effect of Cƒ2-B may have no direct stimulatory effects on insulin secretion or on blood glucose levels in diabetic animal models. Verification of the active compound(s) within the active fraction (Cƒ2-B) indicated the presence of terpenoids and, flavonoids, including sinensitin.
  9. Ibrahim MH, Jaafar HZ
    Molecules, 2011 May 04;16(5):3761-77.
    PMID: 21544039 DOI: 10.3390/molecules16053761
    A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total phenolics, TP; total flavonoids, TF) and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. The treatment effects were solely contributed by CO₂ enrichment levels; no varietal differences were observed. As CO₂ levels increased from 400 to 1,200 µmol mol⁻¹, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose). TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol⁻¹. Net photosynthesis (A) and quantum efficiency of photosystem II (f(v)/f(m)) were also enhanced as CO₂ increased from 400 to 1,200 µmol mol⁻¹. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
  10. Mustaffa F, Indurkar J, Ismail S, Shah M, Mansor SM
    Molecules, 2011 Apr 08;16(4):3037-47.
    PMID: 21478819 DOI: 10.3390/molecules16043037
    This study was designed to investigate the antimicrobial activity of Cinnamomum iners standardized leave methanolic extract (CSLE), its fractions and isolated compounds. CSLE and fractions were subjected to disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using different Gram positive and Gram negative bacteria and yeast. Within the series of fractions tested, the ethyl acetate fraction was the most active, particularly against methicillin resistant Staphylococcus aureus (MRSA) and Escherichia coli, with MIC values of 100 and 200 µg/mL, respectively. The active compound in this fraction was isolated and identified as xanthorrhizol [5-(1, 5-dimethyl-4-hexenyl)-2-methylphenol] by various spectroscopic techniques. The overall results of this study provide evidence that Cinnamomum iners leaves extract as well as the isolated compound xanthorrhizol exhibit antimicrobial activity for both Gram negative and Gram positive pathogens, especially against MRSA strains.
  11. Nagappan T, Segaran TC, Wahid ME, Ramasamy P, Vairappan CS
    Molecules, 2012 Dec 05;17(12):14449-63.
    PMID: 23519245 DOI: 10.3390/molecules171214449
    The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1), mahanimbicine (2), mahanimbine (3)), essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25%) and the group treated with mahanimbicine (2) (12.60%), while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2) (88.54%) and extract of M. koenigii (91.78%) showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1), mahanimbine (3) and essential oil. The study revealed the potential of mahanimbicine (2) and crude extract of M. koenigii in facilitation and acceleration of wound healing.
  12. Mehrnoush A, Mustafa S, Yazid AM
    Molecules, 2011 Dec 08;16(12):10202-13.
    PMID: 22158589 DOI: 10.3390/molecules161210202
    A 'Heat treatment aqueous two phase system' was employed for the first time to purify serine protease from kesinai (Streblus asper) leaves. In this study, introduction of heat treatment procedure in serine protease purification was investigated. In addition, the effects of different molecular weights of polyethylene glycol (PEG 4000, 6000 and 8000) at concentrations of 8, 16 and 21% (w/w) as well as salts (Na-citrate, MgSO₄ and K₂HPO₄) at concentrations of 12, 15, 18% (w/w) on serine protease partition behavior were studied. Optimum conditions for serine protease purification were achieved in the PEG-rich phase with composition of 16% PEG6000-15% MgSO₄. Also, thermal treatment of kesinai leaves at 55 °C for 15 min resulted in higher purity and recovery yield compared to the non-heat treatment sample. Furthermore, this study investigated the effects of various concentrations of NaCl addition (2, 4, 6 and 8% w/w) and different pH (4, 7 and 9) on the optimization of the system to obtain high yields of the enzyme. The recovery of serine protease was significantly enhanced in the presence of 4% (w/w) of NaCl at pH 7.0. Based on this system, the purification factor was increased 14.4 fold and achieved a high yield of 96.7%.
  13. Salga SM, Ali HM, Abdullah MA, Abdelwahab SI, Wai LK, Buckle MJ, et al.
    Molecules, 2011 Nov 07;16(11):9316-30.
    PMID: 22064271 DOI: 10.3390/molecules16119316
    Some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE), antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP) to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES) region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.
  14. Mehrnoush A, Mustafa S, Sarker MZ, Yazid AM
    Molecules, 2011 Nov 03;16(11):9245-60.
    PMID: 22051935 DOI: 10.3390/molecules16119245
    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper) leaves. The effect of independent variables, namely temperature (42.5,47.5, X₁), mixing time (2-6 min, X₂), buffer content (0-80 mL, X₃) and buffer pH (4.5-10.5, X₄) on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.
  15. Masoumi HR, Kassim A, Basri M, Abdullah DK
    Molecules, 2011 Jun 03;16(6):4672-80.
    PMID: 21642941 DOI: 10.3390/molecules16064672
    A Taguchi robust design method with an L₉ orthogonal array was implemented to optimize experimental conditions for the biosynthesis of triethanolamine (TEA)-based esterquat cationic surfactants using an enzymatic reaction method. The esterification reaction conversion% was considered as the response. Enzyme amount, reaction time, reaction temperature and molar ratio of substrates, [oleic acid: triethanolamine (OA:TEA)] were chosen as main parameters. As a result of the Taguchi analysis in this study, the molar ratio of substrates was found to be the most influential parameter on the esterification reaction conversion%. The amount of enzyme in the reaction had also a significant effect on reaction conversion%.
  16. Yeh-Siang L, Subramaniam G, Hadi AH, Murugan D, Mustafa MR
    Molecules, 2011 Apr 06;16(4):2990-3000.
    PMID: 21471938 DOI: 10.3390/molecules16042990
    Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from isolated rat aorta of Sprague-Dawley (SD) in the presence of the β-NADH (enzymatic superoxide inducer) and MPG extract. Superoxide anion production in aortic vessels was measured by lucigen chemiluminesence. Thirty minutes incubation of the rat aorta in vitro with β-NADH increased superoxide radical production and significantly inhibited ACh-induced relaxations. Pretreatment with MPG (0.5, 5 and 50 μg/mL) restored the ACh-induced relaxations (R(max): 92.29% ± 2.93, 91.02% ± 4.54 and 88.31 ± 2.36, respectively) in the presence of β-NADH. MPG was ineffective in reversing the impaired ACh-induced relaxations caused by pyrogallol, a non-enzymatic superoxide generator. Superoxide dismutase (a superoxide scavenger), however, reversed the impaired ACh relaxations induced by both β-NADH and pyrogallol. MPG also markedly inhibited the β-NADH-induced generation of the superoxide radicals. Furthermore, MPG scavenging peroxyl radicals generated by tBuOOH (10⁻⁴ M).These results indicate that MPG may improve the endothelium dependent relaxations to ACh through its scavenging activity as well as by inhibiting the NADH/NADPH oxidase induced generation of superoxide anions.
  17. Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM, Alitheen NB
    Molecules, 2011 Apr 06;16(4):2944-59.
    PMID: 21471934 DOI: 10.3390/molecules16042944
    Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC₅₀ = 4.6 (±0.23) µM in the MTT assay; IC₅₀ = 5.20 (±0.01) µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC₅₀ = 35.0 (±0.09) µM for MTT assay; IC₅₀ = 32.5 (±0.04) µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC₅₀ after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.
  18. Tang SW, Sukari MA, Rahmani M, Lajis NH, Ali AM
    Molecules, 2011 Apr 07;16(4):3018-28.
    PMID: 21475124 DOI: 10.3390/molecules16043018
    A new abietene diterpene, kaempfolienol (5S,6S,7S,9S,10S,11R,13S-abiet-8(14)-enepenta-6,7,9,11,13-ol, 1), was isolated from a rhizome extract of Kaempferia angustifolia Rosc. along with the known compounds crotepoxide, boesenboxide, zeylenol, 2'-hydroxy-4,4',6'-trimethoxychalcone, (24S)-24-methyl-5α-lanosta-9(11),25-dien-3β-ol, β-sitosterol and β-sitosterol-3-O-β-D-glucopyranoside. The structures of all compounds were elucidated on the basis of mass spectroscopic and NMR data. Zeylenol (2), the major constituent of the plant, was derivatized into diacetate, triacetate and epoxide derivatives through standard organic reactions. The cytotoxic activity of compounds 1, 2 and the zeylenol derivatives was evaluated against the HL-60, MCF-7, HT-29 and HeLa cell lines.
  19. Abd Elgadir M, Akanda MJ, Ferdosh S, Mehrnoush A, Karim AA, Noda T, et al.
    Molecules, 2012 Jan 09;17(1):584-97.
    PMID: 22231495 DOI: 10.3390/molecules17010584
    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.
  20. Kadhum AA, Mohamad AB, Al-Amiery AA, Takriff MS
    Molecules, 2011 Aug 15;16(8):6969-84.
    PMID: 21844844 DOI: 10.3390/molecules16086969
    3-Aminocoumarin (L) has been synthesized and used as a ligand for the formation of Cr(III), Ni(II), and Cu(II) complexes. The chemical structures were characterized using different spectroscopic methods. The elemental analyses revealed that the complexes where M=Ni(II) and Cu(II) have the general formulae [ML(2)Cl(2)], while the Cr(III) complex has the formula [CrL(2)Cl(2)]Cl. The molar conductance data reveal that all the metal chelates, except the Cr(III) one, are non-electrolytes. From the magnetic and UV-Visible spectra, it is found that these complexes have octahedral structures. The stability for the prepared complexes was studied theoretically using Density Function Theory. The total energy for the complexes was calculated and it was shown that the copper complex is the most stable one. Complexes were tested against selected types of microbial organisms and showed significant activities. The free radical scavenging activity of metal complexes have been determined by measuring their interaction with the stable free radical DPPH and all the compounds have shown encouraging antioxidant activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links