Displaying publications 161 - 180 of 191 in total

Abstract:
Sort:
  1. Li M, Mathai A, Lau SLH, Yam JW, Xu X, Wang X
    Sensors (Basel), 2021 Jan 05;21(1).
    PMID: 33466530 DOI: 10.3390/s21010313
    Due to medium scattering, absorption, and complex light interactions, capturing objects from the underwater environment has always been a difficult task. Single-pixel imaging (SPI) is an efficient imaging approach that can obtain spatial object information under low-light conditions. In this paper, we propose a single-pixel object inspection system for the underwater environment based on compressive sensing super-resolution convolutional neural network (CS-SRCNN). With the CS-SRCNN algorithm, image reconstruction can be achieved with 30% of the total pixels in the image. We also investigate the impact of compression ratios on underwater object SPI reconstruction performance. In addition, we analyzed the effect of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to determine the image quality of the reconstructed image. Our work is compared to the SPI system and SRCNN method to demonstrate its efficiency in capturing object results from an underwater environment. The PSNR and SSIM of the proposed method have increased to 35.44% and 73.07%, respectively. This work provides new insight into SPI applications and creates a better alternative for underwater optical object imaging to achieve good quality.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Masroor K, Jeoti V, Drieberg M, Cheab S, Rajbhandari S
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922288 DOI: 10.3390/s21092943
    The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10-9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format.
    Matched MeSH terms: Signal-To-Noise Ratio
  3. Elgaud MM, Zan MSD, Abushagur AAG, Hamzah AE, Mokhtar MHH, Arsad N, et al.
    Sensors (Basel), 2021 Jun 23;21(13).
    PMID: 34201845 DOI: 10.3390/s21134299
    For almost a half-decade, the unique autocorrelation properties of Golay complementary pairs (GCP) have added a significant value to the key performance of conventional time-domain multiplexed fiber Bragg grating sensors (TDM-FBGs). However, the employment of the unipolar form of Golay coded TDM-FBG has suffered from several performance flaws, such as limited improvement of the signal-to-noise ratio (SNIR), noisy backgrounds, and distorted signals. Therefore, we propose and experimentally implement several digital filtering techniques to mitigate such limitations. Moving averages (MA), Savitzky-Golay (SG), and moving median (MM) filters were deployed to process the signals from two low reflectance FBG sensors located after around 16 km of fiber. The first part of the experiment discussed the sole deployment of Golay codes from 4 bits to 256 bits in the TDM-FBG sensor. As a result, the total SNIR of around 8.8 dB was experimentally confirmed for the longest 256-bit code. Furthermore, the individual deployment of MA, MM, and SG filters within the mentioned decoded sequences secured a further significant increase in SNIR of around 4, 3.5, and 3 dB, respectively. Thus, the deployment of the filtering technique alone resulted in at least four times faster measurement time (equivalent to 3 dB SNIR). Overall, the experimental analysis confirmed that MM outperformed the other two techniques in better signal shape, fastest signal transition time, comparable SNIR, and capability to maintain high spatial resolution.
    Matched MeSH terms: Signal-To-Noise Ratio*
  4. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
    Matched MeSH terms: Signal-To-Noise Ratio
  5. Jebril AH, Sali A, Ismail A, Rasid MFA
    Sensors (Basel), 2018 Sep 27;18(10).
    PMID: 30262793 DOI: 10.3390/s18103257
    As a possible implementation of a low-power wide-area network (LPWAN), Long Range (LoRa) technology is considered to be the future wireless communication standard for the Internet of Things (IoT) as it offers competitive features, such as a long communication range, low cost, and reduced power consumption, which make it an optimum alternative to the current wireless sensor networks and conventional cellular technologies. However, the limited bandwidth available for physical layer modulation in LoRa makes it unsuitable for high bit rate data transfer from devices like image sensors. In this paper, we propose a new method for mangrove forest monitoring in Malaysia, wherein we transfer image sensor data over the LoRa physical layer (PHY) in a node-to-node network model. In implementing this method, we produce a novel scheme for overcoming the bandwidth limitation of LoRa. With this scheme the images, which requires high data rate to transfer, collected by the sensor are encrypted as hexadecimal data and then split into packets for transfer via the LoRa physical layer (PHY). To assess the quality of images transferred using this scheme, we measured the packet loss rate, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index of each image. These measurements verify the proposed scheme for image transmission, and support the industrial and academic trend which promotes LoRa as the future solution for IoT infrastructure.
    Matched MeSH terms: Signal-To-Noise Ratio
  6. Yakno M, Mohamad-Saleh J, Ibrahim MZ
    Sensors (Basel), 2021 Sep 27;21(19).
    PMID: 34640769 DOI: 10.3390/s21196445
    Enhancement of captured hand vein images is essential for a number of purposes, such as accurate biometric identification and ease of medical intravenous access. This paper presents an improved hand vein image enhancement technique based on weighted average fusion of contrast limited adaptive histogram equalization (CLAHE) and fuzzy adaptive gamma (FAG). The proposed technique is applied using three stages. Firstly, grey level intensities with CLAHE are locally applied to image pixels for contrast enhancement. Secondly, the grey level intensities are then globally transformed into membership planes and modified with FAG operator for the same purposes. Finally, the resultant images from CLAHE and FAG are fused using improved weighted averaging methods for clearer vein patterns. Then, matched filter with first-order derivative Gaussian (MF-FODG) is employed to segment vein patterns. The proposed technique was tested on self-acquired dorsal hand vein images as well as images from the SUAS databases. The performance of the proposed technique is compared with various other image enhancement techniques based on mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measurement (SSIM). The proposed enhancement technique's impact on the segmentation process has also been evaluated using sensitivity, accuracy, and dice coefficient. The experimental results show that the proposed enhancement technique can significantly enhance the hand vein patterns and improve the detection of dorsal hand veins.
    Matched MeSH terms: Signal-To-Noise Ratio
  7. Kamaruddin NH, Bakar AAA, Mobarak NN, Zan MSD, Arsad N
    Sensors (Basel), 2017 Oct 06;17(10).
    PMID: 28984826 DOI: 10.3390/s17102277
    The study of binding affinity is essential in surface plasmon resonance (SPR) sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+and Hg2+ions according to their SPR response using a gold/silver/gold/chitosan-graphene oxide (Au/Ag/Au/CS-GO) sensor for the concentration range of 0.1-5 ppm. The higher affinity of Pb2+to binding with the CS-GO sensor explains the outstanding sensitivity of 2.05 °ppm-1against 1.66 °ppm-1of Hg2+. The maximum signal-to-noise ratio (SNR) upon detection of Pb2+is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS-GO SPR sensor also exhibits excellent repeatability in Pb2+due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+and Hg2+on the CS-GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+and Hg2+ions is computed. The affinity of Pb2+ions to the Au/Ag/Au/CS-GO sensor is significantly higher than that of Hg2+based on the value of K, 7 × 10⁵ M-1and 4 × 10⁵ M-1, respectively. The higher shift in SPR angles due to Pb2+and Hg2+compared to Cr3+, Cu2+and Zn2+ions also reveals the greater affinity of the CS-GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.
    Matched MeSH terms: Signal-To-Noise Ratio
  8. Faysal A, Ngui WK, Lim MH, Leong MS
    Sensors (Basel), 2021 Dec 04;21(23).
    PMID: 34884120 DOI: 10.3390/s21238114
    Rotating machinery is one of the major components of industries that suffer from various faults due to the constant workload. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. In this study, noise eliminated ensemble empirical mode decomposition (NEEEMD) was used for fault feature extraction. A convolution neural network (CNN) classifier was applied for classification because of its feature learning ability. A generalized CNN architecture was proposed to reduce the model training time. A sample size of 64×64×3 pixels RGB scalograms are used as the classifier input. However, CNN requires a large number of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD), and continuous wavelet transform (CWT) are classified. The effectiveness of scalograms is also validated by comparing the classifier performance using grayscale samples from the raw vibration signals. All the outputs from bearing and blade fault classifiers showed that scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity, and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to further increase the CNN classifier's performance and identify the optimal number of training data. After training the classifier using augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The proposed method can be used as a more generalized and robust method for rotating machinery fault diagnosis.
    Matched MeSH terms: Noise
  9. Chin SC, Chow CO, Kanesan J, Chuah JH
    Sensors (Basel), 2022 Jan 14;22(2).
    PMID: 35062601 DOI: 10.3390/s22020639
    Image noise is a variation of uneven pixel values that occurs randomly. A good estimation of image noise parameters is crucial in image noise modeling, image denoising, and image quality assessment. To the best of our knowledge, there is no single estimator that can predict all noise parameters for multiple noise types. The first contribution of our research was to design a noise data feature extractor that can effectively extract noise information from the image pair. The second contribution of our work leveraged other noise parameter estimation algorithms that can only predict one type of noise. Our proposed method, DE-G, can estimate additive noise, multiplicative noise, and impulsive noise from single-source images accurately. We also show the capability of the proposed method in estimating multiple corruptions.
    Matched MeSH terms: Signal-To-Noise Ratio
  10. Singh AP, Prasad U, Kumar N
    Singapore Med J, 1983 Dec;24(6):367-73.
    PMID: 6681493
    Clinical synopsis and investigations on fourteen patients with blast injuries of the ear successfully treated at the ENT Unit of the University Hospital, Kuala Lumpur, revealed few interesting observations in addition to usual findings. The most outstanding one was the absence of sensorineural deafness, although it has been claimed as one of the most constant features. Conservative management alone was found to be of significant value.
    Matched MeSH terms: Hearing Loss, Noise-Induced/diagnosis*
  11. Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Saleviter S, Omar NAS
    PMID: 30594850 DOI: 10.1016/j.saa.2018.12.031
    Surface plasmon resonance (SPR) is a label-free optical spectroscopy that is widely used for biomolecular interaction analysis. In this work, SPR was used to characterize the binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite (CTA-NCC/GO) towards nickel ion. The formation of CTA-NCC/GO nanocomposite has been confirmed by FT-IR. The SPR analysis result shows that the CTA-NCC/GO has high binding affinity towards Ni2+ from 0.01 until 0.1 ppm with binding affinity constant of 1.620 × 103 M-1. The sensitivity for the CTA-NCC/GO calculated was 1.509° ppm-1. The full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have also been determined using the obtained SPR curve. For the FWHM, the value was 2.25° at 0.01 until 0.08 ppm and decreases to 2.12° at 0.1 until 10 ppm. The DA for the SPR curves is the highest at 0.01 until 0.08 ppm and lowest at 0.1 until 10 ppm. The SNR curves mirrors the curves of SPR angle shift where the SNR increases with the Ni2+ concentrations. For the selectivity test, the CTA-NCC/GO has the abilities to differentiate Ni2+ in the mixture of metal ions.
    Matched MeSH terms: Signal-To-Noise Ratio
  12. Dong L, Caruso F, Lin M, Liu M, Gong Z, Dong J, et al.
    J Acoust Soc Am, 2019 06;145(6):3289.
    PMID: 31255103 DOI: 10.1121/1.5110304
    Whistles emitted by Indo-Pacific humpback dolphins in Zhanjiang waters, China, were collected by using autonomous acoustic recorders. A total of 529 whistles with clear contours and signal-to-noise ratio higher than 10 dB were extracted for analysis. The fundamental frequencies and durations of analyzed whistles were in ranges of 1785-21 675 Hz and 30-1973 ms, respectively. Six tonal types were identified: constant, downsweep, upsweep, concave, convex, and sine whistles. Constant type was the most dominant tonal type, accounting for 32.51% of all whistles, followed by sine type, accounting for 19.66% of all whistles. This paper examined 17 whistle parameters, which showed significant differences among the six tonal types. Whistles without inflections, gaps, and stairs accounted for 62.6%, 80.6%, and 68.6% of all whistles, respectively. Significant intraspecific differences in all duration and frequency parameters of dolphin whistles were found between this study and the study in Malaysia. Except for start frequency, maximum frequency and the number of harmonics, all whistle parameters showed significant differences between this study and the study conducted in Sanniang Bay, China. The intraspecific differences in vocalizations for this species may be related to macro-geographic and/or environmental variations among waters, suggesting a potential geographic isolation among populations of Indo-Pacific humpback dolphins.
    Matched MeSH terms: Signal-To-Noise Ratio
  13. Abd Hamid AI, Yusoff AN, Mukari SZ, Mohamad M
    Malays J Med Sci, 2011 Apr;18(2):3-15.
    PMID: 22135581 MyJurnal
    In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information-the working memory-and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds.
    Matched MeSH terms: Noise
  14. Swami CG, Ramanathan J, Charan Jeganath C
    Malays J Med Sci, 2007 Jul;14(2):28-35.
    PMID: 23515367 MyJurnal
    The noise stress, after it passes through the hearing apparatus, not only affects the auditory apparatus but also other body functions. The alterations in the levels of cortical hormone, adrenocorticosterone, nor-epinephrine hormone (which are primarily considered as stress hormones) on follicular stimulating hormone, testosterone, and lutinizing hormone were reported in relation with stress. Male albino rats weighing 200 to 250 grams were exposed to 100 dB of noise for one hour and three hours in acute group and daily one hour exposure for 60 day, and 90 day in chronic group. The serum testosterone levels were measured in these animals. There was significant reduction in serum testosterone levels and this was similar with earlier reports. The tissues were collected for light and confocal microscopic study. 100dB of traffic noise exposure of varying duration had definite permanent effect on testicular histology and morphology and on the male sex hormone. The adaptation mechanism was noticed at the hormonal level only but the structural changes noticed were definite and permanent. The agglutinated dead sperms revealed the possibility of infertily when chronically exposed to noise stress.
    Matched MeSH terms: Noise
  15. Chandralekha G, Jeganathan R, Viswanathan, Charan JC
    Malays J Med Sci, 2005 Jan;12(1):51-6.
    PMID: 22605947
    Even though extensive studies have been conducted on the effect of noise exposure on hearing apparatus / auditory system, information on the effect of noise on the other body functions is sparse. The present study examined the effect of exposure of albino rats to acute and chronic noise stress on two important interlaced endocrine levels. In acute experiments the animals were exposed to 120 dB noise for a duration of 1, 2, 3 hrs. In chronic experiments the animals were exposed to noise for one hour daily for 30, 60 and 90 days. Plasma corticosterone and leptin levels were measured in these animals. There was significant elevation in the levels of corticosterone and leptin after exposure to noise stress. The elevation in corticosterone level after noise stress is in agreement with earlier reports. So noise acts like a stressor and elevates the secretion of the corticosterone, the stress hormone and leptin, the product of the ob gene there is an elevation in leptin levels after noise stress.
    Matched MeSH terms: Noise
  16. Rus RM, Daud A, Musa KI, Naing L
    Malays J Med Sci, 2008 Oct;15(4):28-34.
    PMID: 22589635
    The purpose of this study was to determine the sawmill workers' knowledge, attitude and practice (KAP) in relation to noise-induced hearing loss (NIHL). A cross-sectional study was conducted involving 83 workers from 3 factories in Kota Bharu, Kelantan. Questionnaires were distributed to obtain the socio-demography, knowledge, attitude and practice level in relation to noise-induced hearing loss (NIHL). The weak areas identified in the knowledge section were treatment aspects (15.5%), signs and symptoms of NIHL (20.2%) and risk factors (31%). As for attitude; the prevention aspects were the lowest (25.3%), followed by risk taking attitude (26.2%), and causes of hearing loss (42.1%). Overall, the practice was not encouraging at all. It is important to have an education program to raise workers' awareness and to improve their attitude and practices towards noise-induced hearing loss.
    Matched MeSH terms: Hearing Loss, Noise-Induced
  17. Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, et al.
    Malays J Med Sci, 2018 Sep;25(5):48-58.
    PMID: 30914862 DOI: 10.21315/mjms2018.25.5.5
    Background: Noise exposure causes loss of cochlea hair cells, leading to permanent sensorineural hearing loss, and initiates pathological changes to the bipolar primary auditory neurons (ANs). This study focuses on the effects of N-acetyl-l-cysteine (NAC) in protecting the density of spiral ganglion cells and in histological changes induced by continuous noise exposure in rats.

    Methods: Twenty-four male Wistar rats were randomly allocated into four experimental groups to receive NAC, saline, noise, or both noise and NAC. Noise exposure continued for ten days. Saline and NAC were injected daily during the noise exposure, and 2 days before and after the noise exposure. Evaluation of cochlear histopathology and the density of spiral ganglion cells was performed 21 days after exposure.

    Results: In the animals exposed to noise, a reduction in the density of spiral ganglion cells was evident in both the basal and middle turns of the cochlea. This improved on receiving NAC treatment (P = 0.046). In the histopathology evaluation, some histological changes, such as disorganised architecture of the outer hair and supporting cells and a slightly thickened basilar membrane, were found in the basal turns in the noise group.

    Conclusion: NAC offered partial protection against noise exposure by improving the density of spiral ganglion cells and reducing morphological changes.

    Matched MeSH terms: Noise
  18. Nasir MH, Rampal KG
    Med J Malaysia, 2012 Feb;67(1):81-6.
    PMID: 22582554 MyJurnal
    Sensorineural hearing loss is a common and important source of disability among the workers and often caused by occupational noise exposure. Aims of the study were to determine the prevalence and contributing factors of hearing loss among airport workers. A cross-sectional study was carried out at an airport in Malaysia. This study used stratified sampling method that involved 358 workers who were working in 3 different units between November 2008 and March 2009. Data for this study were collected by using questionnaires eliciting sociodemographic, occupational exposure history (previous and present), life-style including smoking habits and health-related data. Otoscopic and pure-tone audiometric tests were conducted for hearing assessment. Noise exposure status was categorize by using a noise logging dosimeter to obtain 8-hour Time-Weighted Average (TWA). Data was analyzed by using SPSS version 12.0.1 and EpiInfo 6.04. The prevalence of hearing loss was 33.5%. Age >40 years old (aOR 4.3, 95%CI 2.2-8.3) is the main risk factors for hearing loss followed by duration of noise exposure >5 years (aOR 2.5, 95%CI 1.4-4.7), smoking (aOR 2.1, 95%CI 1.2-3.4), duration of service >5 years (aOR 2.1, 95%CI 1.1-3.9), exposure to explosion (aOR 6.1, 95%CI 1.3-29.8), exposure to vibration (aOR 2.2, 95%CI 1.1-4.3) and working in engineering unit (aOR 5.9, 95%CI 1.1-30.9). The prevalence rate ratio of hearing loss for nonsmokers aged 40 years old and younger, smokers aged 40 years old and younger, non-smokers older than 40 years old and smokers older than 40 years old was 1.0, 1.7, 2.8 and 4.6 respectively. This result contributes towards better understanding of risk factors for hearing loss, which is relatively common among Malaysian workers.
    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology*; Hearing Loss, Noise-Induced/epidemiology
  19. Thomas N, Mariah AN, Fuad A, Kuljit S, Philip R
    Med J Malaysia, 2007 Jun;62(2):152-5.
    PMID: 18705450 MyJurnal
    Thirty-two points in Kuala Lumpur were selected where traffic personnel were on duty. Sound level readings were taken three times a day. Generally, the traffic noise levels were between 75 dBA to 85 dBA. The maximum sound level recorded was 108.2 dBA. Noise emitted by traffic equipment and vehicles were up to 133 dBA. Results of audiometric tests revealed that out of 30 who were tested, 24 or 80% were positive for noise-induced hearing loss. A questionnaire survey revealed a lack of knowledge on occupational safety and personal protective equipment.
    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology*; Hearing Loss, Noise-Induced/prevention & control; Noise, Occupational/adverse effects*; Noise, Transportation/adverse effects*
  20. Maisarah SZ, Said H
    Med J Malaysia, 1993 Sep;48(3):280-5.
    PMID: 8183139
    A total of 524 industrial workers were studied. They consisted of 442 noise exposed and 82 non-noise exposed workers. The purpose was to compare the prevalence of sensori-neural hearing loss among the noise exposed and the non-noise exposed workers, to study their knowledge on the hazard of noise to hearing and the workers' attitude towards the hearing protection devices. The prevalence of sensori-neural hearing loss was significantly higher among the noise exposed workers, i.e., 83% versus 31.7% (p < 0.01). However, the prevalence of hearing impairment was much lower for both groups, being 30.1% for the noise exposed and 3.7% for the non-noise exposed group. Although hearing protection devices were provided to 80.5% of the workers, only 5.1% were wearing them regularly. The possibility of developing hearing loss due to exposure to excessive noise was only known by 35.5% of the noise exposed workers. This awareness was found to have a positive correlation with the workers' compliance to the hearing protection devices. Our findings highlight the need for workers to be educated on the hazards of excessive noise exposure to hearing.
    Matched MeSH terms: Hearing Loss, Noise-Induced/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links