Displaying publications 161 - 180 of 1168 in total

Abstract:
Sort:
  1. Bong PN, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Emran NA, et al.
    Malays J Pathol, 2010 Dec;32(2):117-22.
    PMID: 21329183 MyJurnal
    The GATA3 gene is a potential tumour marker and putative tumour suppressor gene in breast cancer. Its expression is associated with better prognosis and disease free survival in breast cancer patients. We aimed to evaluate GATA3 transcriptome expression and mutation in breast carcinomas and correlate its expression with oestrogen receptor (ER), progesterone receptor (PR), lymph node (LN) status, tumour grade and c-erbB-2 expression. Twenty-two breast infiltrating ductal carcinomas and paired normal tissues were used in Branch DNA assay to detect GATA3 mRNA expression. Normalized data for GATA3 mRNA expression were grouped according to the ER, PR and LN status, tumour grade and c-erbB-2 expression of the tumours. Statistical significance was tested using t-test and ANOVA at 95% confidence interval level. Mutational analysis of GATA3 was performed by direct sequencing of the coding regions of GATA3 mRNA. Our findings showed that GATA3 gene were over-expressed and under-expressed by > 2 fold change in 12 and 4 tested samples, respectively. Eighty per cent of ER positive breast carcinomas were GATA3 positive. There was a statistically significant correlation between GATA3 expression and ER at 95% confidence interval level between the study groups. On the contrary, GATA3 expression was not statistically significant with PR, LN, tumour grade and c-erbB-2 expression in our study. In addition, we observed that there was no mutation in mRNA coding region in 16 breast carcinomas that showed GATA3 differential gene expression. Our preliminary results suggested that GATA3 is linked to the ER. This scenario suggests that GATA3 may play a crucial role in oestrogen receptor positive breast cancer patients. Whether GATA3 expression is involved in regulating tumour cell growth in oestrogen responsive breast cancer is a key question that remains to be answered.
    Matched MeSH terms: Breast Neoplasms/genetics*; Breast Neoplasms/metabolism
  2. Borgquist S, Rosendahl AH, Czene K, Bhoo-Pathy N, Dorkhan M, Hall P, et al.
    Breast Cancer Res, 2018 08 09;20(1):93.
    PMID: 30092829 DOI: 10.1186/s13058-018-1026-7
    BACKGROUND: Long-term insulin exposure has been implicated in breast cancer etiology, but epidemiological evidence remains inconclusive. The aims of this study were to investigate the association of insulin therapy with mammographic density (MD) as an intermediate phenotype for breast cancer and to assess associations with long-term elevated circulating insulin levels using a genetic score comprising 18 insulin-associated variants.

    METHODS: We used data from the KARolinska MAmmography (Karma) project, a Swedish mammography screening cohort. Insulin-treated patients with type 1 (T1D, n = 122) and type 2 (T2D, n = 237) diabetes were identified through linkage with the Prescribed Drug Register and age-matched to 1771 women without diabetes. We assessed associations with treatment duration and insulin glargine use, and we further examined MD differences using non-insulin-treated T2D patients as an active comparator. MD was measured using a fully automated volumetric method, and analyses were adjusted for multiple potential confounders. Associations with the insulin genetic score were assessed in 9437 study participants without diabetes.

    RESULTS: Compared with age-matched women without diabetes, insulin-treated T1D patients had greater percent dense (8.7% vs. 11.4%) and absolute dense volumes (59.7 vs. 64.7 cm3), and a smaller absolute nondense volume (615 vs. 491 cm3). Similar associations were observed for insulin-treated T2D, and estimates were not materially different in analyses comparing insulin-treated T2D patients with T2D patients receiving noninsulin glucose-lowering medication. In both T1D and T2D, the magnitude of the association with the absolute dense volume was highest for long-term insulin therapy (≥ 5 years) and the long-acting insulin analog glargine. No consistent evidence of differential associations by insulin treatment duration or type was found for percent dense and absolute nondense volumes. Genetically predicted insulin levels were positively associated with percent dense and absolute dense volumes, but not with the absolute nondense volume (percentage difference [95% CI] per 1-SD increase in insulin genetic score = 0.8 [0.0; 1.6], 0.9 [0.1; 1.8], and 0.1 [- 0.8; 0.9], respectively).

    CONCLUSIONS: The consistency in direction of association for insulin treatment and the insulin genetic score with the absolute dense volume suggest a causal influence of long-term increased insulin exposure on mammographic dense breast tissue.

    Matched MeSH terms: Breast Neoplasms/prevention & control
  3. Boyle ST, Mittal P, Kaur G, Hoffmann P, Samuel MS, Klingler-Hoffmann M
    J Proteome Res, 2020 10 02;19(10):4093-4103.
    PMID: 32870688 DOI: 10.1021/acs.jproteome.0c00511
    Tumorigenesis involves a complex interplay between genetically modified cancer cells and their adjacent normal tissue, the stroma. We used an established breast cancer mouse model to investigate this inter-relationship. Conditional activation of Rho-associated protein kinase (ROCK) in a model of mammary tumorigenesis enhances tumor growth and progression by educating the stroma and enhancing the production and remodeling of the extracellular matrix. We used peptide matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify the proteomic changes occurring within tumors and their stroma in their regular spatial context. Peptides were ranked according to their ability to discriminate between the two groups, using a receiver operating characteristic tool. Peptides were identified by liquid chromatography tandem mass spectrometry, and protein expression was validated by quantitative immunofluorescence using an independent set of tumor samples. We have identified and validated four key proteins upregulated in ROCK-activated mammary tumors relative to those expressing kinase-dead ROCK, namely, collagen I, α-SMA, Rab14, and tubulin-β4. Rab14 and tubulin-β4 are expressed within tumor cells, whereas collagen I is localized within the stroma. α-SMA is predominantly localized within the stroma but is also expressed at higher levels in the epithelia of ROCK-activated tumors. High expression of COL1A, the gene encoding the pro-α 1 chain of collagen, correlates with cancer progression in two human breast cancer genomic data sets, and high expression of COL1A and ACTA2 (the gene encoding α-SMA) are associated with a low survival probability (COLIA, p = 0.00013; ACTA2, p = 0.0076) in estrogen receptor-negative breast cancer patients. To investigate whether ROCK-activated tumor cells cause stromal cancer-associated fibroblasts (CAFs) to upregulate expression of collagen I and α-SMA, we treated CAFs with medium conditioned by primary mammary tumor cells in which ROCK had been activated. This led to abundant production of both proteins in CAFs, clearly highlighting the inter-relationship between tumor cells and CAFs and identifying CAFs as the potential source of high levels of collagen 1 and α-SMA and associated enhancement of tissue stiffness. Our research emphasizes the capacity of MALDI-MSI to quantitatively assess tumor-stroma inter-relationships and to identify potential prognostic factors for cancer progression in human patients, using sophisticated mouse cancer models.
    Matched MeSH terms: Breast Neoplasms
  4. Bradbury KE, Appleby PN, Tipper SJ, Travis RC, Allen NE, Kvaskoff M, et al.
    Int J Cancer, 2019 03 01;144(5):957-966.
    PMID: 30191956 DOI: 10.1002/ijc.31854
    Insulin-like growth factor-I (IGF-I) regulates cell proliferation and apoptosis, and is thought to play a role in tumour development. Previous prospective studies have shown that higher circulating concentrations of IGF-I are associated with a higher risk of cancers at specific sites, including breast and prostate. No prospective study has examined the association between circulating IGF-I concentrations and melanoma risk. A nested case-control study of 1,221 melanoma cases and 1,221 controls was performed in the European Prospective Investigation into Cancer and Nutrition cohort, a prospective cohort of 520,000 participants recruited from 10 European countries. Conditional logistic regression was used to estimate odds ratios (ORs) for incident melanoma in relation to circulating IGF-I concentrations, measured by immunoassay. Analyses were conditioned on the matching factors and further adjusted for age at blood collection, education, height, BMI, smoking status, alcohol intake, marital status, physical activity and in women only, use of menopausal hormone therapy. There was no significant association between circulating IGF-I concentration and melanoma risk (OR for highest vs lowest fifth = 0.93 [95% confidence interval [CI]: 0.71 to 1.22]). There was no significant heterogeneity in the association between IGF-I concentrations and melanoma risk when subdivided by gender, age at blood collection, BMI, height, age at diagnosis, time between blood collection and diagnosis, or by anatomical site or histological subtype of the tumour (Pheterogeneity≥0.078). We found no evidence for an association between circulating concentrations of IGF-I measured in adulthood and the risk of melanoma.
    Matched MeSH terms: Breast Neoplasms/etiology; Breast Neoplasms/metabolism
  5. Brand JS, Czene K, Eriksson L, Trinh T, Bhoo-Pathy N, Hall P, et al.
    PLoS One, 2013;8(12):e81876.
    PMID: 24349146 DOI: 10.1371/journal.pone.0081876
    BACKGROUND: Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density.
    METHODS: We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied.
    RESULTS: Overall, alcohol intake was positively associated with percent mammographic density (P trend  = 0.07). This association was modified by HRT use (P interaction  = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend  = 0.01) but not in non-current users (P trend  = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction  = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use.
    CONCLUSIONS: Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk.
    Matched MeSH terms: Breast Neoplasms/etiology*; Breast Neoplasms/radiography
  6. Brand JS, Hedayati E, Bhoo-Pathy N, Bergh J, Hall P, Humphreys K, et al.
    Cancer, 2017 02 01;123(3):468-475.
    PMID: 27727456 DOI: 10.1002/cncr.30364
    BACKGROUND: Venous thromboembolism (VTE) is a serious complication of cancer and its treatment. The current study assessed the risk and clinical predictors of VTE in breast cancer patients by time since diagnosis.

    METHODS: This Swedish population-based study included 8338 breast cancer patients diagnosed from 2001 to 2008 in the Stockholm-Gotland region with complete follow-up until 2012. Their incidence of VTE was compared with the incidence among 39,013 age-matched reference individuals from the general population. Cox and flexible parametric models were used to examine associations with patient, tumor, and treatment characteristics, accounting for time-dependent effects.

    RESULTS: Over a median follow-up of 7.2 years, 426 breast cancer patients experienced a VTE event (cumulative incidence, 5.1%). The VTE incidence was 3-fold increased (hazard ratio [HR], 3.28; 95% confidence interval [CI], 2.87-3.74) in comparison with the incidence in the general population and was highest 6 months after diagnosis (HR, 8.62; 95% CI, 6.56-11.33) with a sustained increase in risk thereafter (HR at 5 years, 2.19; 95% CI, 1.80-2.67). Independent predictors of VTE included the following: older age, being overweight, preexisting VTE, comorbid disease, tumor size > 40 mm, progesterone receptor (PR)-negative status, more than 4 affected lymph nodes, and receipt of chemo- and endocrine therapy. The impact of chemotherapy was limited to early-onset VTE, whereas comorbid disease and PR-negative status were more strongly associated with late-onset events.

    CONCLUSIONS: This study confirms the long-term risk of VTE in breast cancer patients and identifies a comprehensive set of clinical risk predictors. Temporal associations with patient, tumor, and treatment characteristics provide insight into the time-dependent etiology of VTE. Cancer 2017;123:468-475. © 2016 American Cancer Society.

    Matched MeSH terms: Breast Neoplasms/complications*; Breast Neoplasms/drug therapy*; Breast Neoplasms/pathology
  7. Breast Cancer Association Consortium, Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, et al.
    N Engl J Med, 2021 02 04;384(5):428-439.
    PMID: 33471991 DOI: 10.1056/NEJMoa1913948
    BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

    METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

    RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

    CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).

    Matched MeSH terms: Breast Neoplasms/genetics*
  8. Brouckaert O, Rudolph A, Laenen A, Keeman R, Bolla MK, Wang Q, et al.
    Breast Cancer Res, 2017 Nov 07;19(1):119.
    PMID: 29116004 DOI: 10.1186/s13058-017-0909-3
    BACKGROUND: Previous studies have shown that reproductive factors are differentially associated with breast cancer (BC) risk by subtypes. The aim of this study was to investigate associations between reproductive factors and BC subtypes, and whether these vary by age at diagnosis.

    METHODS: We used pooled data on tumor markers (estrogen and progesterone receptor, human epidermal growth factor receptor-2 (HER2)) and reproductive risk factors (parity, age at first full-time pregnancy (FFTP) and age at menarche) from 28,095 patients with invasive BC from 34 studies participating in the Breast Cancer Association Consortium (BCAC). In a case-only analysis, we used logistic regression to assess associations between reproductive factors and BC subtype compared to luminal A tumors as a reference. The interaction between age and parity in BC subtype risk was also tested, across all ages and, because age was modeled non-linearly, specifically at ages 35, 55 and 75 years.

    RESULTS: Parous women were more likely to be diagnosed with triple negative BC (TNBC) than with luminal A BC, irrespective of age (OR for parity = 1.38, 95% CI 1.16-1.65, p = 0.0004; p for interaction with age = 0.076). Parous women were also more likely to be diagnosed with luminal and non-luminal HER2-like BCs and this effect was slightly more pronounced at an early age (p for interaction with age = 0.037 and 0.030, respectively). For instance, women diagnosed at age 35 were 1.48 (CI 1.01-2.16) more likely to have luminal HER2-like BC than luminal A BC, while this association was not significant at age 75 (OR = 0.72, CI 0.45-1.14). While age at menarche was not significantly associated with BC subtype, increasing age at FFTP was non-linearly associated with TNBC relative to luminal A BC. An age at FFTP of 25 versus 20 years lowered the risk for TNBC (OR = 0.78, CI 0.70-0.88, p 

    Matched MeSH terms: Breast Neoplasms/diagnosis; Breast Neoplasms/etiology*; Breast Neoplasms/epidemiology*; Triple Negative Breast Neoplasms/diagnosis; Triple Negative Breast Neoplasms/etiology; Triple Negative Breast Neoplasms/epidemiology
  9. Burton A, Byrnes G, Stone J, Tamimi RM, Heine J, Vachon C, et al.
    Breast Cancer Res, 2016 12 19;18(1):130.
    PMID: 27993168
    BACKGROUND: Inter-women and intra-women comparisons of mammographic density (MD) are needed in research, clinical and screening applications; however, MD measurements are influenced by mammography modality (screen film/digital) and digital image format (raw/processed). We aimed to examine differences in MD assessed on these image types.

    METHODS: We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric (GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441), with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a random intercept for woman, to estimate processed-raw MD differences.

    RESULTS: Breast area did not differ in processed images compared with that in raw images, but the percent MD was higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI: 0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE 0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: -0.10, 0.23)). Additionally, within each system, reader-specific differences varied in magnitude and direction (p 

    Matched MeSH terms: Breast Neoplasms/pathology*
  10. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P
    Mol Pharm, 2016 12 05;13(12):4179-4190.
    PMID: 27934479
    This study investigated the potential of chitosan-coated mixed micellar nanocarriers (polyplexes) for codelivery of siRNA and doxorubicin (DOX). DOX-loaded mixed micelles (serving as cores) were prepared by thin film hydration method and coated with chitosan (CS, serving as outer shell), and complexed with multidrug resistance (MDR) inhibiting siRNA. Selective targeting was achieved by folic acid conjugation. The polyplexes showed pH-responsive enhanced DOX release in acidic tumor pH, resulting in higher intracellular accumulation, which was further augmented by downregulation of mdr-1 gene after treatment with siRNA-complexed polyplexes. In vitro cytotoxicity assay demonstrated an enhanced cytotoxicity in native 4T1 and multidrug-resistant 4T1-mdr cell lines, compared to free DOX. Furthermore, in vivo, polyplexes codelivery resulted in highest DOX accumulation and significantly reduced the tumor volume in mice with 4T1 and 4T1-mdr tumors as compared to the free DOX groups, leading to improved survival times in mice. In conclusion, codelivery of siRNA and DOX via polyplexes has excellent potential as targeted drug nanocarriers for treatment of MDR cancers.
    Matched MeSH terms: Breast Neoplasms/genetics; Breast Neoplasms/therapy*
  11. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, et al.
    Int J Nanomedicine, 2016;11:413-28.
    PMID: 26858524 DOI: 10.2147/IJN.S90198
    In this study, we synthesized a multifunctional nanoparticulate system with specific targeting, imaging, and drug delivering functionalities by following a three-step protocol that operates at room temperature and solely in aqueous media. The synthesis involves the encapsulation of luminescent Mn:ZnS quantum dots (QDs) with chitosan not only as a stabilizer in biological environment, but also to further provide active binding sites for the conjugation of other biomolecules. Folic acid was incorporated as targeting agent for the specific targeting of the nanocarrier toward the cells overexpressing folate receptors. Thus, the formed composite emits orange-red fluorescence around 600 nm and investigated to the highest intensity at Mn(2+) doping concentration of 15 at.% and relatively more stable at low acidic and low alkaline pH levels. The structural characteristics and optical properties were thoroughly analyzed by using Fourier transform infrared, X-ray diffraction, dynamic light scattering, ultraviolet-visible, and fluorescence spectroscopy. Further characterization was conducted using thermogravimetric analysis, high-resolution transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy. The cell viability and proliferation studies by means of MTT assay have demonstrated that the as-synthesized composites do not exhibit any toxicity toward the human breast cell line MCF-10 (noncancer) and the breast cancer cell lines (MCF-7 and MDA-MB-231) up to a 500 µg/mL concentration. The cellular uptake of the nanocomposites was assayed by confocal laser scanning microscope by taking advantage of the conjugated Mn:ZnS QDs as fluorescence makers. The result showed that the functionalization of the chitosan-encapsulated QDs with folic acid enhanced the internalization and binding affinity of the nanocarrier toward folate receptor-overexpressed cells. Therefore, we hypothesized that due to the nontoxic nature of the composite, the as-synthesized nanoparticulate system can be used as a promising candidate for theranostic applications, especially for a simultaneous targeted drug delivery and cellular imaging.
    Matched MeSH terms: Breast Neoplasms/pathology*; Breast Neoplasms/therapy
  12. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, et al.
    Nat Genet, 2014 Aug;46(8):886-90.
    PMID: 25038754 DOI: 10.1038/ng.3041
    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
    Matched MeSH terms: Breast Neoplasms/genetics*
  13. Callari M, Batra AS, Batra RN, Sammut SJ, Greenwood W, Clifford H, et al.
    BMC Genomics, 2018 01 05;19(1):19.
    PMID: 29304755 DOI: 10.1186/s12864-017-4414-y
    BACKGROUND: Patient-Derived Tumour Xenografts (PDTXs) have emerged as the pre-clinical models that best represent clinical tumour diversity and intra-tumour heterogeneity. The molecular characterization of PDTXs using High-Throughput Sequencing (HTS) is essential; however, the presence of mouse stroma is challenging for HTS data analysis. Indeed, the high homology between the two genomes results in a proportion of mouse reads being mapped as human.

    RESULTS: In this study we generated Whole Exome Sequencing (WES), Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing (RNA-seq) data from samples with known mixtures of mouse and human DNA or RNA and from a cohort of human breast cancers and their derived PDTXs. We show that using an In silico Combined human-mouse Reference Genome (ICRG) for alignment discriminates between human and mouse reads with up to 99.9% accuracy and decreases the number of false positive somatic mutations caused by misalignment by >99.9%. We also derived a model to estimate the human DNA content in independent PDTX samples. For RNA-seq and RRBS data analysis, the use of the ICRG allows dissecting computationally the transcriptome and methylome of human tumour cells and mouse stroma. In a direct comparison with previously reported approaches, our method showed similar or higher accuracy while requiring significantly less computing time.

    CONCLUSIONS: The computational pipeline we describe here is a valuable tool for the molecular analysis of PDTXs as well as any other mixture of DNA or RNA species.

    Matched MeSH terms: Breast Neoplasms/genetics; Breast Neoplasms/metabolism
  14. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H, et al.
    Breast Cancer Res, 2018 04 17;20(1):29.
    PMID: 29665866 DOI: 10.1186/s13058-018-0955-5
    BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC).

    METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.

    RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).

    CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.

    Matched MeSH terms: Breast Neoplasms/genetics*; Breast Neoplasms/epidemiology*; Breast Neoplasms/pathology
  15. Carran M, Shaw IC
    N Z Med J, 2012;125(1358):52-63.
    PMID: 22864157
    It is well known that the endocrine-disrupting chemical (EDC) dibutylphthalate (DBP) inhibits testosterone synthesis and can lead to feminisation in male laboratory animals. Moreover, it has long been speculated that human exposure would result in the similar effects, but this is difficult to study because specific human exposure cohorts are rare. We report increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In addition, we modelled absorption of DBP from the soldiers' clothing and using published data for skin absorption, and calculated a large theoretical absorbed dose of 64 mg/kg body weight/day which is similar to DBP's lowest observed adverse effect level (LOAEL) of 50 mg/kg body weight/day and thus indicates a biological effect is possible. This is the first report of a multigenerational developmental effect following DBP exposure in human males.
    Matched MeSH terms: Breast Neoplasms/etiology*; Breast Neoplasms/epidemiology
  16. Ch'ng ES, Tuan Sharif SE, Jaafar H
    Asian Pac J Cancer Prev, 2012;13(9):4445-52.
    PMID: 23167359
    BACKGROUND: Prognosis of breast cancer depends on classic pathological factors and also tumor angiogenesis. This study aimed to evaluate the clinicopathological factors of breast cancer in a tertiary centre with a focus on the relationship between tumor angiogenesis and clinicopathological factors.

    METHODS: Clinicopathological data were retrieved from the archived formal pathology reports for surgical specimens diagnosed as invasive ductal carcinoma, NOS. Microvessels were immunohistochemically stained with anti-CD34 antibody and quantified as microvessel density.

    RESULTS: At least 50% of 94 cases of invasive breast ductal carcinoma in the study were advanced stage. The majority had poor prognosis factors such as tumor size larger than 50mm (48.9%), positive lymph node metastasis (60.6%), and tumor grade III (52.1%). Higher percentages of estrogen and progesterone receptor negative cases were recorded (46.8% and 46.8% respectively). Her-2 overexpression cases and triple negative breast cancers constituted 24.5% and 22.3% respectively. Significantly higher microvessel density was observed in the younger patient age group (p=0.012). There were no significant associations between microvessel density and other clinicopathological factors (p>0.05).

    CONCLUSIONS: Majority of the breast cancer patients of this institution had advanced stage disease with poorer prognostic factors as compared to other local and western studies. Breast cancer in younger patients might be more proangiogenic.

    Matched MeSH terms: Breast Neoplasms/blood supply*; Breast Neoplasms/metabolism; Breast Neoplasms/pathology*
  17. Ch'ng ES, Tuan Sharif SE, Jaafar H
    Virchows Arch., 2013 Mar;462(3):257-67.
    PMID: 23283409 DOI: 10.1007/s00428-012-1362-4
    Tumor-associated macrophages play a crucial role in breast cancer progression and tumor angiogenesis. However, evaluation of tumor-associated macrophages incorporating their histological locations is lacking. The aim of this study was to clarify whether macrophages in tumor stroma and macrophages in tumor cell nests have distinctive properties in relation to pertinent breast cancer clinicopathological parameters and tumor angiogenesis. In 94 human invasive breast ductal carcinomas, tumor-associated macrophages were immunostained with anti-CD68 antibody and counted or graded according to these histological locations. Microvessels were immunostained with anti-CD34 antibody and counted for microvessel density. We found that the presence of tumor stromal and tumor nest macrophages was closely correlated (p = 0.001). Both tumor stromal and tumor nest macrophages were associated with mitotic count (p = 0.001 and p = 0.037, respectively). However, only higher tumor stromal macrophage grades were associated with higher tumor grades (p = 0.004) and negative estrogen receptor status (p = 0.007). Multivariate analysis showed that tumors with a high mitotic count score (score 3 vs. scores 1 and 2) had a higher tumor stromal macrophage density (Grades III and IV) when adjusted for tumor size, tubule formation, and estrogen receptor status (odds ratio 3.41, p = 0.010). The tumor nest macrophage count significantly correlated with the microvessel density (p 
    Matched MeSH terms: Breast Neoplasms/blood supply; Breast Neoplasms/pathology*
  18. Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, et al.
    Ann Oncol, 2017 Nov 01;28(11):2836-2842.
    PMID: 28950350 DOI: 10.1093/annonc/mdx482
    BACKGROUND: Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological data based on dietary questionnaires remain conflicting.

    MATERIALS AND METHODS: We assessed the association between plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition study. Sixty fatty acids were measured by gas chromatography in pre-diagnostic plasma phospholipids from 2982 incident breast cancer cases matched to 2982 controls. Conditional logistic regression models were used to estimate relative risk of breast cancer by fatty acid level. The false discovery rate (q values) was computed to control for multiple comparisons. Subgroup analyses were carried out by estrogen receptor (ER) and progesterone receptor expression in the tumours.

    RESULTS: A high level of palmitoleic acid [odds ratio (OR) for the highest quartile compared with the lowest OR (Q4-Q1) 1.37; 95% confidence interval (CI), 1.14-1.64; P for trend = 0.0001, q value = 0.004] as well as a high desaturation index (DI16) (16:1n-7/16:0) [OR (Q4-Q1), 1.28; 95% C, 1.07-1.54; P for trend = 0.002, q value = 0.037], as biomarkers of de novo lipogenesis, were significantly associated with increased risk of breast cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumours [OR for the highest tertile compared with the lowest (T3-T1)=2.01; 95% CI, 1.03-3.90; P for trend = 0.047], whereas no association was found for ER-positive tumours (P-heterogeneity =0.01). No significant association was found between n-3 polyunsaturated fatty acids and breast cancer risk, overall or by hormonal receptor.

    CONCLUSION: These findings suggest that increased de novo lipogenesis, acting through increased synthesis of palmitoleic acid, could be a relevant metabolic pathway for breast tumourigenesis. Dietary trans-fatty acids derived from industrial processes may specifically increase ER-negative breast cancer risk.

    Matched MeSH terms: Breast Neoplasms/blood; Breast Neoplasms/diagnosis*; Breast Neoplasms/epidemiology
  19. Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW
    J Integr Med, 2019 May;17(3):155-160.
    PMID: 30928277 DOI: 10.1016/j.joim.2019.03.003
    Ursolic acid (UA) is a pentacyclic triterpene of the ursane type. As a common chemical constituent among species of the family Lamiaceae, UA possesses a broad spectrum of pharmacological properties. This overview focuses on the anticancer properties of UA against breast cancer (BC) and colorectal cancer (CRC) that are most common among women and men, respectively. In vitro studies have shown that UA inhibited the growth of BC and CRC cell lines through various molecular targets and signaling pathways. There are several in vivo studies on the cytotoxic activity of UA against BC and CRC. UA also inhibits the growth of other types of cancer. Studies on structural modifications of UA have shown that the -OH groups at C3 and at C28 are critical factors influencing the cytotoxic activity of UA and its derivatives. Some needs for future research are suggested. Sources of information were from ScienceDirect, Google Scholar and PubMed.
    Matched MeSH terms: Breast Neoplasms/drug therapy*; Breast Neoplasms/physiopathology
  20. Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Ramdzan Buyong M, Hoe SLL, et al.
    Electrophoresis, 2019 10;40(20):2728-2735.
    PMID: 31219180 DOI: 10.1002/elps.201800442
    This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.
    Matched MeSH terms: Breast Neoplasms/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links