Displaying publications 161 - 180 of 363 in total

Abstract:
Sort:
  1. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
    Matched MeSH terms: Tropical Climate*
  2. Md Din MF, Lee YY, Ponraj M, Ossen DR, Iwao K, Chelliapan S
    J Therm Biol, 2014 Apr;41:6-15.
    PMID: 24679966 DOI: 10.1016/j.jtherbio.2014.01.004
    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.
    Matched MeSH terms: Tropical Climate*
  3. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al.
    New Phytol, 2018 08;219(3):851-869.
    PMID: 29451313 DOI: 10.1111/nph.15027
    Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
    Matched MeSH terms: Tropical Climate*
  4. May RM, Stumpf MP
    Science, 2000 Dec 15;290(5499):2084-6.
    PMID: 11187834
    A power law called the species-area relationship describes the finding that the number of species is proportional to the size of the area in which they are found, raised to an exponent (usually, a number between 0.2 and 0.3). In their Perspective, May and Stumpf discuss new results from a survey of five tropical forest census areas containing a total of a million trees. They explain how this large data set can be used to fine-tune the existing power law so that it provides a better prediction of species diversity in small census samples.
    Matched MeSH terms: Tropical Climate*
  5. Matanjun P, Mohamed S, Muhammad K, Mustapha NM
    J Med Food, 2010 Aug;13(4):792-800.
    PMID: 20482284 DOI: 10.1089/jmf.2008.1212
    This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats.
    Matched MeSH terms: Tropical Climate
  6. Maschwitz U, Moog J
    Naturwissenschaften, 2000 Dec;87(12):563-5.
    PMID: 11198200
    The behavioral response of the obligate bamboo-nesting ant Cataulacus muticus to nest flooding was studied in a perhumid tropical rainforest in Malaysia and in the laboratory. The hollow internodes of giant bamboo, in which C. muticus exclusively nests, are prone to flooding by heavy rains. The ants showed a two-graded response to flooding. During heavy rain workers block the nest entrances with their heads to reduce water influx. However, rainwater may still intrude into the nest chamber. The ants respond by drinking the water, leaving the nest and excreting water droplets on the outer stem surface. This cooperative 'peeing' behavior is a new survival mechanism adaptive to the ants' nesting ecology. Laboratory experiments conducted with two other Cataulacus species, C. catuvolcus colonizing small dead twigs and C. horridus inhabiting rotten wood, did not reveal any form of water-bailing behavior.
    Matched MeSH terms: Tropical Climate
  7. Martin-Smith KM, Laird LM, Bullough L, Lewis MG
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1803-10.
    PMID: 11605623
    Community resistance to, and resilience from, perturbation will determine the trajectory of recovery from disturbance. Although selective timber extraction is considered a severe disturbance, fish communities from headwater streams around Danum Valley Field Centre, Sabah, Malaysia, showed few long-term changes in species composition or abundance. However, some species showed short-term (< 18 months) absence or decrease in abundance. These observations suggested that both resistance and resilience were important in maintaining long-term fish community structure. Resistance to perturbation was tested by monitoring fish communities before and after the creation of log-debris dams, while resilience was investigated by following the time-course of recolonization following complete removal of all fish. High community resistance was generally shown although the response was site-specific, dependent on the composition of the starting community, the size of the stream and physical habitat changes. High resilience was demonstrated in all recolonization experiments with strong correlations between pre- and post-defaunation communities, although there was a significant difference between pool and riffle habitats in the time-course of recovery. These differences can be explained by the movement characteristics of the species found in the different habitats. Resilience appeared to be a more predictable characteristic of the community than resistance and the implications of this for ensuring the long-term persistence of fish in the area are discussed.
    Matched MeSH terms: Tropical Climate
  8. Martin TE
    Science, 2015 Aug 28;349(6251):966-70.
    PMID: 26315435 DOI: 10.1126/science.aad1173
    Life history theory attempts to explain why species differ in offspring number and quality, growth rate, and parental effort. I show that unappreciated interactions of these traits in response to age-related mortality risk challenge traditional perspectives and explain life history evolution in songbirds. Counter to a long-standing paradigm, tropical songbirds grow at similar overall rates to temperate species but grow wings relatively faster. These growth tactics are favored by predation risk, both in and after leaving the nest, and are facilitated by greater provisioning of individual offspring by parents. Increased provisioning of individual offspring depends on partitioning effort among fewer young because of constraints on effort from adult and nest mortality. These growth and provisioning responses to mortality risk finally explain the conundrum of small clutch sizes of tropical birds.
    Matched MeSH terms: Tropical Climate*
  9. Martin TE, Ton R, Niklison A
    Ecol Lett, 2013 Jun;16(6):738-45.
    PMID: 23473270 DOI: 10.1111/ele.12103
    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
    Matched MeSH terms: Tropical Climate
  10. Maqbool A, Paul BT, Jesse FFA, Teik Chung EL, Mohd Lila MA, Haron AW
    Microb Pathog, 2021 Aug;157:105001.
    PMID: 34048891 DOI: 10.1016/j.micpath.2021.105001
    BACKGROUND: We investigated the biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats experimentally challenged with M. haemolytica serotype A2 under rainy and hot tropical conditions. A total of twenty-four clinically healthy, non-pregnant, female goats randomly allocated to 2 groups of 12 goats each were used for the study. The 12 goats in each season were subdivided into three groups (n = 4), which served as the control (G-NEG), non-vaccinated (G-POS), and vaccinated (G-VACC). In week-1, the G-VACC received 2 mL of alum-precipitated pasteurellosis vaccine while G-POS and G-NEG received 2 ml of sterile PBS. In week 2, the G-POS and G-VACC received 1 mL intranasal spray containing 105 CFU of M. haemolytica serotype A2. Inoculation was followed by daily monitoring and weekly bleeding for eight weeks to collect data and serum for biomarkers and immune responses using commercial ELISA test kits. The goats were humanely euthanised at the end of the experiments to collect lungs and the submandibular lymph nodes tissue samples for gross and histopathological examinations.

    RESULTS: Regardless of the season, we have observed a significant (p 

    Matched MeSH terms: Tropical Climate
  11. Mangara SG, Sukmono, Kusumadiharja J, Suroso T, Sutjipto H
    PMID: 11414442
    It is known that in Padang, Rantau, Rangsang, Merbau and Bengkalis islands, Riau Province, the deposit of oil was found in a huge quantity. The drilling concession belongs to Kondur Petroleum Company. To operate an exploitation, hundreds of workers not only Indonesian but also the workers from foreign countries come and go to that area. It was recorded that the workers from foreign countries come from Singapore, Malaysia, Thailand, The Philippines, Taiwan, Japan, Korea. United States of America and from France, Britain, Australia and Germany. These workers have a close interaction with about 50,00 local population distributed with a high concentration in some places. The high risk of DHF was determined since the significant density of Aedes aregypti larvae, the main vector of DHF, were found in Lukit, Mengkikip and Melibur, three locations of survey. Of 104 (53.3%) of 195 houses in these three survey locations were found positive for the larvae. Even though there were no positive of larvae in 65 houses in Lukit, in Melibur and Mengkikip, the House Index (HI) was 61.7% and 95.7%. Outside the houses 521 containers were examined in three locations of survey and 329 (63.1%) were positive for Ae. aegypti larvae. The highest number of containers positive for Ae. aegypti larvae were 213 (94.7%) out of 225 and found in Mengkikip. In Melibur, 114 (68.3%) out of 167 of containers were positive and in Lukit only 2 (1.56%) out of 129 containers were positive of Ae. aegypti larvae. These larvae density constitute a high risk of DHF outbreak, and unfortunately is supported by the rainfall situation recorded in Kurau and BZ Climatology Stations. It was recorded that all along the year, at least one day in a month there was the rain which the rainfall volume was 30 ml.
    Matched MeSH terms: Tropical Climate
  12. Malhi Y, Riutta T, Wearn OR, Deere NJ, Mitchell SL, Bernard H, et al.
    Nature, 2022 Dec;612(7941):707-713.
    PMID: 36517596 DOI: 10.1038/s41586-022-05523-1
    Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
    Matched MeSH terms: Tropical Climate*
  13. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, et al.
    Tree Physiol, 2012 Mar;32(3):303-12.
    PMID: 22367761 DOI: 10.1093/treephys/tps008
    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.
    Matched MeSH terms: Tropical Climate
  14. Magrach A, Senior RA, Rogers A, Nurdin D, Benedick S, Laurance WF, et al.
    Proc Biol Sci, 2016 Mar 16;283(1826):20153008.
    PMID: 26936241 DOI: 10.1098/rspb.2015.3008
    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.
    Matched MeSH terms: Tropical Climate
  15. Lutterodt GD, Maleque A
    J Ethnopharmacol, 1988 Dec;24(2-3):219-31.
    PMID: 3253493
    Studies were carried out on the suppression of both exploratory and spontaneous locomotor activities in the mouse by a non-polar fraction from a methanol extract of the dried leaves of Psidium guajava. Shortly after intraperitoneal administration of this fraction, typical narcotic-like effects were observed, including catalepsy, analgesia, Straub tail, shallow respiratory movements and exophthalmos. The dose for 90% suppression of exploratory activity was between 3.3 and 6.6 mg/kg intraperitoneally and the onset of action was 6-8 min. The duration of activity was dose-dependent and, for a dose of 13.2 mg/kg given intraperitoneally, it was found to be more than 6 h. Qualitatively similar results on exploratory activity were obtained when the extract was administered orally. Doses of 3.3-6.6 mg/kg i.p. depressed spontaneous locomotor activity and tunnel running was curtailed. Higher doses abolished the spontaneous locomotor reflex action. A flavonoid compound or compounds appear to account for the activity seen.
    Matched MeSH terms: Tropical Climate
  16. Luskin MS, Johnson DJ, Ickes K, Yao TL, Davies SJ
    Proc Biol Sci, 2021 03 10;288(1946):20210001.
    PMID: 33653133 DOI: 10.1098/rspb.2021.0001
    Large vertebrates are rarely considered important drivers of conspecific negative density-dependent mortality (CNDD) in plants because they are generalist consumers. However, disturbances like trampling and nesting also cause plant mortality, and their impact on plant diversity depends on the spatial overlap between wildlife habitat preferences and plant species composition. We studied the impact of native wildlife on a hyperdiverse tree community in Malaysia. Pigs (Sus scrofa) are abnormally abundant at the site due to food subsidies in nearby farmland and they construct birthing nests using hundreds of tree saplings. We tagged 34 950 tree saplings in a 25 ha plot during an initial census and assessed the source mortality by recovering tree tags from pig nests (n = 1672 pig-induced deaths). At the stand scale, pigs nested in flat dry habitats, and at the local neighbourhood scale, they nested within clumps of saplings, both of which are intuitive for safe and efficient nest building. At the stand scale, flat dry habitats contained higher sapling densities and higher proportions of common species, so pig nesting increased the weighted average species evenness across habitats. At the neighbourhood scale, pig-induced sapling mortality was associated with higher heterospecific and especially conspecific sapling densities. Tree species have clumped distributions due to dispersal limitation and habitat filtering, so pig disturbances in sapling clumps indirectly caused CNDD. As a result, Pielou species evenness in 400 m2 quadrats increased 105% more in areas with pig-induced deaths than areas without disturbances. Wildlife induced CNDD and this supported tree species evenness, but they also drove a 62% decline in sapling densities from 1996 to 2010, which is unsustainable. We suspect pig nesting is an important feature shaping tree composition throughout the region.
    Matched MeSH terms: Tropical Climate
  17. Low JSY, Chew LL, Ng CC, Goh HC, Lehette P, Chong VC
    J Therm Biol, 2018 May;74:14-22.
    PMID: 29801619 DOI: 10.1016/j.jtherbio.2018.02.012
    Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species.
    Matched MeSH terms: Tropical Climate
  18. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
    Matched MeSH terms: Tropical Climate
  19. Lo GL, Bagramian RA
    Community Dent Oral Epidemiol, 1996 Feb;24(1):25-7.
    PMID: 8833510
    Prevalence and severity of dental fluorosis was assessed in 1739 Singaporean children aged 9, 12 and 16 yr in three different ethnic groups. All subjects had resided since birth in Singapore, which has a tropical climate. The water supply was fluoridated in 1957 at a level of 0.7 ppm. In this sample, mouth prevalence was 82.6%, tooth prevalence was 66.9%, the community fluorosis index was at 1.96; 9.2% of children had severe fluorosis and 26.2% had moderate fluorosis. There were no significant gender or racial differences. Prevalences were higher than those reported in most other studies. Due to differences in indices used and methodology, comparisons could not be made directly with other studies.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links