Displaying publications 1861 - 1880 of 1903 in total

Abstract:
Sort:
  1. Brunton PJ, Donadio MV, Yao ST, Greenwood M, Seckl JR, Murphy D, et al.
    J Neurosci, 2015 Jan 14;35(2):666-77.
    PMID: 25589761 DOI: 10.1523/JNEUROSCI.5104-13.2015
    Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1β; IL-1β) in adulthood, compared with controls. IL-1β acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3β-androstanediol (3β-diol; 5α-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the "programmed" hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1β (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3β-diol normalized HPA axis responses to IL-1β in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5α-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1β. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5α-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner.
    Matched MeSH terms: RNA, Messenger/genetics; RNA, Messenger/metabolism
  2. Zhou L, Wang P, Zhang J, Heng BC, Tong GQ
    Zygote, 2016 Feb;24(1):89-97.
    PMID: 25672483 DOI: 10.1017/S0967199414000768
    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
    Matched MeSH terms: RNA Interference
  3. Brett M, McPherson J, Zang ZJ, Lai A, Tan ES, Ng I, et al.
    PLoS One, 2014;9(4):e93409.
    PMID: 24690944 DOI: 10.1371/journal.pone.0093409
    Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism.
    Matched MeSH terms: RNA Splice Sites
  4. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: RNA, Transfer
  5. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

    Matched MeSH terms: Sequence Analysis, RNA
  6. Chen YF, Chong CL, Wu YC, Wang YL, Tsai KN, Kuo TM, et al.
    PLoS One, 2015;10(6):e0131743.
    PMID: 26121644 DOI: 10.1371/journal.pone.0131743
    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy.
    Matched MeSH terms: RNA, Viral
  7. Shafee N, AbuBakar S
    J Gen Virol, 2003 Aug;84(Pt 8):2191-2195.
    PMID: 12867651 DOI: 10.1099/vir.0.19022-0
    Apoptosis was detected in Vero cell cultures expressing transfected dengue virus type 2 (DENV-2) genes. Approximately 17.5 and 51.5 % of cells expressing NS3 serine protease and NS2B-NS3(185) serine protease precursor protein [NS2B-NS3(185)(pro)] genes, respectively, were apoptotic. The percentage of apoptotic cells was significantly higher in cell cultures expressing NS2B-NS3(185)(pro). NS2B-NS3(185)(pro) was detected as NS2B-NS3(185)(pro)-EGFP fusion protein in cytoplasmic vesicular structures in the apoptotic cells. Site-directed mutagenesis which replaced His(51) with Ala within the protease catalytic triad significantly reduced the ability of the expressed NS3 and NS2B-NS3(185)(pro) to induce apoptosis. Results from the present study showed that DENV-2-encoded NS3 serine protease induces apoptosis, which is enhanced in cells expressing its precursor, NS2B-NS3(185)(pro). These findings suggest the importance of NS2B as a cofactor to NS3 protease-induced apoptosis.
    Matched MeSH terms: RNA Helicases
  8. Tan JA, Tan KL, Omar KZ, Chan LL, Wee YC, George E
    Eur J Pediatr, 2009 Sep;168(9):1049-54.
    PMID: 19034506 DOI: 10.1007/s00431-008-0877-9
    INTRODUCTION: Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A).

    MATERIALS AND METHODS: HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia.

    RESULTS AND DISCUSSION: Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA.

    CONCLUSION: The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

    Matched MeSH terms: RNA Splice Sites
  9. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: RNA, Ribosomal, 16S
  10. Teo MYM, Ng JJC, Fong JY, Hwang JS, Song AA, Lim RLH, et al.
    PeerJ, 2021;9:e11063.
    PMID: 33959410 DOI: 10.7717/peerj.11063
    Background: KRAS oncogenes harboring codon G12 and G13 substitutions are considered gatekeeper mutations which drive oncogenesis in many cancers. To date, there are still no target-specific vaccines or drugs available against this genotype, thus reinforcing the need towards the development of targeted therapies such as immunotoxins.

    Methods: This study aims to develop a recombinant anti-mKRAS scFv-fused mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin that is capable of recognizing and eradicating codon-12 mutated k-ras antigen abnormal cells. One G13D peptide mimotope (164-D) and one G12V peptide mimotope (68-V) were designed to elicit antigen specific IgG titres against mutated K-ras antigens in immunised Balb/c mice. The RNA was extracted from splenocytes following ELISA confirmation on post-immunized mice sera and was reverse transcribed into cDNA. The scFv combinatorial library was constructed from cDNA repertoire of variable regions of heavy chain (VH) and light chain (VL) fusions connected by a flexible glycine-serine linker, using splicing by overlap extension PCR (SOE-PCR). Anti-mKRAS G12V and G13D scFvs were cloned in pCANTAB5E phagemid and superinfected with helper phage. After few rounds of bio-panning, a specific mKRAS G12V and G13D scFv antibody against G12V and G13D control mimotope was identified and confirmed using ELISA without any cross-reactivity with other mimotopes or controls. Subsequently, the anti-mKRAS scFv was fused to mHALT-1 using SOE-PCR and cloned in pET22b vector. Expressed recombinant immunotoxins were analyzed for their effects on cell proliferation by the MTT assay and targeted specificity by cell-based ELISA on KRAS-positive and KRAS-negative cancer cells.

    Results: The VH and VL genes from spleen RNA of mice immunized with 164-D and 68-V were amplified and randomly linked together, using SOE-PCR producing band sizes about 750 bp. Anti-mKRAS G12V and G13D scFvs were constructed in phagemid pCANTAB5E vectors with a library containing 3.4 × 106 and 2.9 × 106 individual clones, respectively. After three rounds of bio-panning, the anti-mKRAS G12V-34 scFv antibody against G12V control mimotope was identified and confirmed without any cross-reactivity with other controls using ELISA. Anti-mKRAS G12V-34 scFv fragment was fused to mHALT-1 toxin and cloned in pET22b vector with expression as inclusion bodies in E. coli BL21(DE3) (molecular weight of ~46.8 kDa). After successful solubilization and refolding, the mHALT-1-scFv immunotoxin exhibited cytotoxic effects on SW-480 colorectal cancer cells with IC50 of 25.39 μg/mL, with minimal cytotoxicity effect on NHDF cells.

    Discussion: These results suggested that the development of such immunotoxins is potentially useful as an immunotherapeutic application against KRAS-positive malignancies.

    Matched MeSH terms: RNA
  11. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK
    BMC Microbiol, 2016 Jun 27;16(1):127.
    PMID: 27349637 DOI: 10.1186/s12866-016-0746-z
    BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.

    RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.

    CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines.

    Matched MeSH terms: RNA, Transfer
  12. Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, et al.
    Eur J Immunol, 2014 Mar;44(3):894-904.
    PMID: 24310293 DOI: 10.1002/eji.201343496
    Runx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated. The regulatory mechanism for differential transcription is, however, not fully understood. In this study, we investigated the regulation of the proximal Runx1 promoter in T cells. We showed that proximal Runx1 was expressed at a low level in naïve T cells from C57BL/6 mice, but its expression was remarkably induced upon T-cell activation. In the promoter of proximal Runx1, a highly conserved region was identified which spans from -412 to the transcription start site and harbors a NFAT binding site. In a luciferase reporter assay, this region was found to be responsive to T-cell activation through Lck and calcineurin pathways. Mutagenesis studies and chromatin immunoprecipitation assay indicated that the NFAT site was essential for NFAT binding and transactivation of the proximal Runx1 promoter. Furthermore, TCR signaling-induced expression of proximal Runx1 was blocked by treatment of cells with cyclosporin A. Together, these results demonstrate that the calcineurin-NFAT pathway regulates proximal Runx1 transcription upon TCR stimulation.
    Matched MeSH terms: RNA Interference
  13. Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al.
    Emerg Microbes Infect, 2016 Aug 17;5(8):e90.
    PMID: 27530749 DOI: 10.1038/emi.2016.90
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
    Matched MeSH terms: RNA, Viral
  14. Hudu SA, Niazlin MT, Nordin SA, Tan SS, Omar H, Shahar H, et al.
    Afr Health Sci, 2018 Dec;18(4):1117-1133.
    PMID: 30766578 DOI: 10.4314/ahs.v18i4.33
    Background: Hepatitis B virus co-infection with other strains of viral hepatitis is associated with increased risk of liver cirrhosis and hepatic decompensation.

    Objectives: This is a prevalence study that assessed the genetic diversity of chronic hepatitis B patients and coinfection.

    Methods: Chronic hepatitis B patients enrolled in this study were tested for antibodies of other hepatitis viruses using ELISA kits. Patient clinical profiles were collected and partial genes of HBV, HCV, and HEV were amplified, sequenced, and analyzed using phylogenetic analysis. The associations between variables were determined using the chi-squared test.

    Results: Of the 82 patients recruited for this study, 53.7% were non-cirrhotic, 22.0% cirrhotic, 20.7% acute flare and 3.7% hepatocellular carcinoma. Majority (58%) of patients had a high level of ALT (≥34 U/L). Sequence analysis showed HBV (63.9%) belonged to genotype B, HEV belonged to genotype 4 while HCV belonged to genotype 3a and the genotypes were found to be significantly associated with the clinical stage of the patients (χ2=56.632; p<0.01). Similarly, Hepatitis B e antigen was also found to be significantly associated with the clinical stage of infection (χ2=51.952; p<0.01).

    Conclusion: This study revealed that genetic diversity was found to have a significant impact on the severity of infection.

    Matched MeSH terms: RNA, Viral
  15. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: Sequence Analysis, RNA
  16. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

    Matched MeSH terms: RNA, Ribosomal, 16S
  17. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, et al.
    Virol J, 2016 Feb 25;13:33.
    PMID: 26916286 DOI: 10.1186/s12985-016-0488-4
    BACKGROUND: Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking.
    METHODS: The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference.
    RESULTS: A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed.
    CONCLUSIONS: The present study reported the molecular complexity and evolutionary dynamics of human betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43 genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics.
    Study site: Primary Care Clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: RNA, Viral
  18. Mak KK, Shiming Z, Epemolu O, Dinkova-Kostova AT, Wells G, Gazaryan IG, et al.
    ChemistryOpen, 2022 Oct;11(10):e202200181.
    PMID: 36284193 DOI: 10.1002/open.202200181
    This is the first study investigating the nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity of compounds containing a new scaffold, tetrahydrobenzo[b]thiophene. Eighteen compounds were synthesised and confirmed their NRF2 activation through NQO1 enzymatic activity and mRNA expression of NQO1 and HO-1 in Hepa-1c1c7 cells. The compounds disrupted the interaction between Kelch-like ECH-associated protein 1 (KEAP1) and NRF2 via interfering with the KEAP1's Kelch domain. The compounds exhibited anti-inflammatory activity in Escherichia coli Lipopolysaccharide (LPSEc )-stimulated RAW 264.7 cells. The anti-inflammatory activity of the compounds was associated with their ability to activate NRF2. The compounds reversed the elevated levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and inflammatory mediators (PGE2, COX-2, and NF-κB). The compounds were metabolically stable in human, rat, and mouse liver microsomes and showed optimum half-life (T1/2 ) and intrinsic clearance (Clint ). The binding mode of the compounds and physicochemical properties were predicted via in silico studies.
    Matched MeSH terms: RNA, Messenger
  19. Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, Ho CL
    J Plant Physiol, 2015 Jun 15;182:23-32.
    PMID: 26037695 DOI: 10.1016/j.jplph.2015.05.003
    Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells.
    Matched MeSH terms: RNA Interference
  20. Ugusman A, Zakaria Z, Hui CK, Nordin NA
    Clinics (Sao Paulo), 2010 Jul;65(7):709-14.
    PMID: 20668629 DOI: 10.1590/S1807-59322010000700010
    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs).
    Matched MeSH terms: RNA, Messenger
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links