Displaying all 7 publications

Abstract:
Sort:
  1. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  2. Adnan NA, Halmi MIE, Abd Gani SS, Zaidan UH, Abd Shukor MY
    PMID: 34205553 DOI: 10.3390/ijerph18126644
    Predicting the crucial effect of single metal pollutants against the aquatic ecosystem has been highly debatable for decades. However, dealing with complex metal mixtures management in toxicological studies creates a challenge, as heavy metals may evoke greater toxicity on interactions with other constituents rather than individually low acting concentrations. Moreover, the toxicity mechanisms are different between short term and long term exposure of the metal toxicant. In this study, acute and chronic toxicity based on luminescence inhibition assay using newly isolated Photobacterium sp.NAA-MIE as the indicator are presented. Photobacterium sp.NAA-MIE was exposed to the mixture at a predetermined ratio of 1:1. TU (Toxicity Unit) and MTI (Mixture Toxic Index) approach presented the mixture toxicity of Hg2+ + Ag+, Hg2+ + Cu2+, Ag+ + Cu2+, Hg2+ + Ag+ + Cu2+, and Cd2+ + Cu2+ showed antagonistic effect over acute and chronic test. Binary mixture of Cu2+ + Zn2+ was observed to show additive effect at acute test and antagonistic effect at chronic test while mixture of Ni2+ + Zn2+ showing antagonistic effect during acute test and synergistic effect during chronic test. Thus, the strain is suitable and their use as bioassay to predict the risk assessment of heavy metal under acute toxicity without abandoning the advantage of chronic toxicity extrapolation.
  3. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
  4. Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY
    Molecules, 2020 Jun 16;25(12).
    PMID: 32560037 DOI: 10.3390/molecules25122771
    Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
  5. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
  6. Habib S, Ahmad SA, Wan Johari WL, Abd Shukor MY, Alias SA, Smykla J, et al.
    Int J Mol Sci, 2020 Aug 26;21(17).
    PMID: 32858859 DOI: 10.3390/ijms21176138
    Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain's genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.
  7. Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, et al.
    Int J Environ Res Public Health, 2020 Nov 11;17(22).
    PMID: 33187288 DOI: 10.3390/ijerph17228339
    Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links