Displaying all 7 publications

Abstract:
Sort:
  1. Zhuo F, Abourehab MAS, Hussain Z
    Carbohydr Polym, 2018 Oct 01;197:478-489.
    PMID: 30007638 DOI: 10.1016/j.carbpol.2018.06.023
    Nano-delivery systems have gained remarkable recognition for targeted delivery of therapeutic payload, reduced off-target effects, and improved biopharmaceutical profiles of drugs. Therefore, we aimed to fabricate polymeric nanoparticles (NPs) to deliver tacrolimus (TCS) to deeper layers of the skin in order to alleviate its systemic toxicity and improved therapeutic efficacy against atopic dermatitis (AD). To further optimize the targeting efficiency, TCS-loaded NPs were coated with hyaluronic acid (HA). Following the various physicochemical optimizations, the prepared HA-TCS-CS-NPs were tested for in vitro drug release kinetics, drug permeation across the stratum corneum, percentage of drug retained in the epidermis and dermis, and anti-AD efficacy. Results revealed that HA-TCS-CS-NPs exhibit sustained release profile, promising drug permeation ability, improved skin retention, and pronounced anti-AD efficacy. Conclusively, we anticipated that HA-based modification of TCS-CS-NPs could be a promising therapeutic approach for rationalized management of AD, particularly in children as well as in adults having steroid phobia.
  2. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
  3. Abourehab MAS, Khames A, Genedy S, Mostafa S, Khaleel MA, Omar MM, et al.
    Pharmaceutics, 2021 Apr 19;13(4).
    PMID: 33921796 DOI: 10.3390/pharmaceutics13040581
    Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC-NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC-NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box-Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC-SOL) was studied. In vivo bioavailability from optimized NIC-NLC and NIC-SOL following IN and IV administration was evaluated and compared. The optimized NIC-NLC formula showed an average particle size of 111.18 nm, zeta potential of -15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC-NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC-NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC-NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
  4. Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE
    Artif Cells Nanomed Biotechnol, 2018 Dec;46(8):1967-1980.
    PMID: 29082766 DOI: 10.1080/21691401.2017.1397001
    This review aims to overview and critically analyses recent developments in achieving tumour-specific delivery of anticancer agents, maximizing anticancer efficacy, and mitigating tumour progression and off-target effects. Stemming from critical needs to develop target-specific delivery vehicles in cancer therapy, various hyaluronic acid (HA)-conjugated nanomedicines have been fabricated owing to their biocompatibility, safety, tumour-specific targetability of drugs and genes, and proficient interaction with cluster-determinant-44 (CD44) receptors over-expressed on the surface of tumour cells. HA-based conjugation or surface modulation of anticancer drugs encapsulated nanocarriers have shown promising efficacy against the various types of carcinomas of liver, breast, colorectal, pancreatic, lung, skin, ovarian, cervical, head and neck and gastric. The success of this emerging platform is assessed in achieving the rapid internalization of anticancer payloads into the tumour cells, impeding cancer cells division and proliferation, induction of cancer-specific apoptosis and prevention of metastasis (tumour progression). This review extends detailed insight into the engineering of HA-based nanomedicines, characterization, utilization for the diagnosis or treatment of CD44 over-expressing cancer subtypes and emphasizing the transition of nanomedicines to clinical cancer therapy.
  5. Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, et al.
    J Control Release, 2020 12 10;328:873-894.
    PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053
    Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
  6. Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, et al.
    J Control Release, 2021 07 10;335:130-157.
    PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018
    Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
  7. Alfaleh MA, Fahmy O, Al-Rabia MW, Abourehab MAS, Ahmed OAA, Fahmy UA, et al.
    Sci Rep, 2022 Nov 14;12(1):19446.
    PMID: 36376469 DOI: 10.1038/s41598-022-24151-3
    As a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Fluvastatin (FLV) is used for reducing low-density lipoprotein (LDL) cholesterol as well as to prevent cardiovascular problems. FLV showed cell line cytotoxicity and antitumor effect. Melittin (MEL) exhibits antineoplastic activity and is known to be promising as a therapeutic option for cancer patients. The aim of this work was to investigate the combination of FLV with MEL loaded hybrid formula of phospholipid (PL) with alpha lipoic acid (ALA) nanoparticles to maximize anticancer tendencies. This study examines the optimization of the prepared formulation in order to minimize nanoparticles size and maximize zeta potential to potentiate cytotoxic potentialities in colon cancer cells (Caco2), cell viability, cell cycle analysis and annexin V were tested. In addition to biological markers as P53, Bax, bcl2 and Caspase 3 evaluation The combination involving FLV PL ALA MEL showed enhanced cytotoxic potentiality (IC50 = 9.242 ± 0.35 µg/mL), about twofold lower, compared to the raw FLV (IC50 = 21.74 ± 0.82 µg/mL). According to studies analyzing cell cycle, optimized FLV PL ALA MEL was found to inhibit Caco2 colon cancer cells more significantly than other therapeutic treatments, wherein a higher number of cells were found to accumulate over G2/M and pre-G1 phases, whereas G0/G1/S phases witnessed the accumulation of a lower number of cells. The optimized formulation may pave the way for a novel and more efficacious treatment for colon cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links