Organophosphates (OPs) are insecticide used to replace the persistence organochlorines (OCs). OPs are the effective insecticide used to control pests to enhance crops productions. Due to the strong recalcitrant properties, OPs cannot totally be degraded by conventional wastewater treatment process and the effluent causes negative impacts to the environment. The effectiveness of the AOPs is relied on the strong radical namely hydroxyl radicals (•OH) which can convert the pollutants into less harmful products. Photocatalysis is one of the AOPs widely practiced in water treatment process. A good photocatalyst must able to promote the electron from its valance band to the conduction band and the prevent the photogenerated electrons from returning to its valance band. The electron generated was further reacted with oxygen to form peroxyl radicals, •O2-. The hole (h+) formed was then react with water molecule to form •OH. Titanium dioxide, TiO2 is well known photocatalyst which only can be activated under ultra-violet light. Visible light photocatalysts are in the current research trend as they are found to be an effective method to degrade contaminants in wastewater. Various type of dopants has been doped on the TiO2 with different method purposely to shift the absorption of light from the UV light region to visible light region. The purpose of this review is to present the studies on different preparation method of the modified TiO2 and application of the modified TiO2 in degrading different types of OP pesticides. Finally, the need for present and further research on OPs wastewater also briefly discussed.
The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.
Biogranulation is an effective biological technology suitable for the treatment of various wastewaters. However, the major drawback of this technique is the long start-up period for biogranule development. Hence, the primary focus of this study was on cell surface hydrophobicity which is the main parameter that indicates cell agglomeration during the initial self-immobilization process of aerobic granulation. The effects of sludge concentration and magnetic activated carbon on cell surface hydrophobicity were investigated in this study. Response surface methodology (RSM) was applied to design, analyze, and optimize the outcome of the study. Experiments were performed at sludge concentration of 1,000-3,000 mg/L and magnetic activated carbon mass of 1-5 g/L with 24 hr of aeration time. The results show that both variables yielded a positive significant effect on the initial development of aerobic granulation with 56% surface hydrophobicity. Interaction effects between variables on the responses were significant with positive estimated interaction effect at all different measured aeration time. The magnetic activated carbon acted as nuclei to induce bacterial attachment and further enhanced the initial process of biogranule development under optimal condition of 1:1.1 (sludge concentration: magnetic activated carbon). PRACTITIONER POINTS: Cell surface hydrophobicity was evaluated Magnetic activated carbon enhanced cell surface hydrophobicity Response surface methodology was employed for analyses Magnetic activate carbon mass and biomass concentration was significant Magnetic activated carbon acted as nuclei to improve biogranulation.
The high nutrient concentration in domestic wastewater effluent can endanger the aquatic life via eutrophication. Thus, research have been carried out to prevent harm to aquatic life. In regard biofilm reactors have been successful by far with few limitations. Bio-carrier fabrication of desired shape is one of the limitations. Recently, the invention of additive manufacturing (AM) of object made it feasible to fabricate the desired shape. In this study additive manufactured bio‒carrier (AMB) was printed using AM technique, with high surface area to volume ratio as well as density higher than water. The submerged attach growth sequencing batch biofilm reactor (SAGSBBR) for organic and nutrient removal from domestic wastewater (DWW) was conducted to determine the optimum bio‒carrier filling ratio (FR) and cycle time (CT) by using response surface methodology (RSM) with CT ranging between 12 h and 24 h and FR ranging between 0 and 20%. The maximum chemical oxygen demand (COD), ammonia-nitrogen (NH4 +‒N), and total phosphorus (TP) removal was 96.8 mg/L, 93.32 mg/L, and 88.89 mg/L respectively, which was achieved in submerged attached growth sequential biofilm batch reactor with 10% FR (SAGSBBR‒10). The optimization study determined the optimal solution of CT and FR to be 17.07 h and 12.38% respectively, with desirability of 0.987. The predicted mean of responses for the optimal solution were 96.64%, 94.40% and 89.94% for COD removal, NH4 +‒N removal and TP removal, respectively. The rate of biomass attachment at the first stage in SAGSBBR‒10 and SAGSBBR‒20 was about 11.39 mg/carrier.d and 8.64 mg/carrier.d, whereas the highest accumulation achieved was 98.27 mg/carrier and 80.15 mg/carrier respectively. Thus, this study can assist us to achieve sustainable development goal (SDG) 6.
Dye decolorization through biological treatment techniques has been gaining momentum as it is based on suspended and attached growth biomass in both batch and continuous modes. Hence, this review focused on the contribution of moving bed biofilm reactors (MBBR) in dye removal. MBBR have been demonstrated to be an excellent technology for pollution extraction, load shock resistance, and equipment size and energy consumption reduction. The review went further to highlight different biocarrier materials for biofilm development this review identified biochar as an innovative and environmentally friendly material produced through the application of different kinds of reusable or recyclable wastes and biowastes. Biochar as a carbonized waste biomass could be a better competitor and environmentally friendly substitute to activated carbon given its lower mass costs. Biochar can be easily produced particularly in rural locations where there is an abundance of biomass-based trash. Given that circular bioeconomy lowers dependency on natural resources by turning organic wastes into an array of useful products, biochar empowers the creation of competitive goods. Thus, biochar was identified as a novel, cost-effective, and long-term management strategy since it brings about several essential benefits, including food security, climate change mitigation, biodiversity preservation, and sustainability improvement. This review concludes that integrating two treatment methods could greatly lead to better color, organic matter, and nutrients removal than a single biological MBBR treatment process.