Displaying all 10 publications

Abstract:
Sort:
  1. Haryati Yaacob, Mohd Rosli Hainin, Ahmad Safuan, Chag FL
    Sains Malaysiana, 2014;43:467-474.
    Quality of bond between layers of asphaltic concrete course is a key element to ensure the performance of a modern asphalt pavement. A proper interlayer bond ensures the structural integrity of the pavement and prevents possible distresses from occurring within the designed service life. In Malaysia, delamination is a common distress related to insufficient degree of adhesion though slippage failure can be occasionally encountered. Generally, bond development is closely related to the design factors and construction factors. This paper however focused on the construction factors only, hoping to provide some useful information which might be overlooked by the contractors during construction but is of extreme important especially in enhancing the bond development in the asphalt layers. The construction factors in particular interest discussed in this paper include curing time of asphalt emulsion, surface condition of a pavement and technology and quality of workmanship and construction. It is important to note that both design factors and construction factors are inter-related in optimizing the degree of adhesion. Thus, all factors need to be carefully identified and fulfilled in order to maximize the bond strength between pavement surfacing layers for a better quality and longer service life of pavement in Malaysia.
  2. Yamusa Bello Yamus, Yamusa Bello Yamus, Ahmad Safuan A. Rashid, Kamarudin Ahmad, Norhan Abd Rahman
    MyJurnal
    Laterite soils are occasionally associated with geotechnical problems such as road deformation, erosion, settlement, dam seepage, slope instability, leachate permeation through hydraulic barriers, etc. Numerous soil improvement techniques were being applied to overcome these problems, including mixing the laterite soil with cements, limes, bitumen, chemicals, pozzolanas, etc. These additives may not be locally available and cheap, and could significantly increase the cost of construction. Likewise, in many cases, these stabilizing agents are not environmentally friendly. Different percentages of fines, sand and gravel in laterite soils exhibit different engineering characteristics and behaviour, making it difficult to obtain suitable and appropriate gradation for specific construction purposes. Thus, the essence of this review is to determine the fundamental engineering properties of laterite soil as a standalone material at different gradations to harness its potentiality for various construction purposes. It proposes step-by-step procedures on how to achieve a better soil by varying its gradation and moisture content. Laboratory testing in accordance with BS1377:1990 and ASTM D698 are adopted to examine the engineering characteristics with respect to hydraulic conductivity, shear strength, and volumetric shrinkage. In this experimental technique where molding water content and compaction energy are carefully controlled at different laterite gradations, the engineering design is anticipated to provide greater accuracy, safety, and sustainability.
  3. Kalatehjari R, Rashid AS, Ali N, Hajihassani M
    ScientificWorldJournal, 2014;2014:973093.
    PMID: 24991652 DOI: 10.1155/2014/973093
    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
  4. Che Azmi NA, Mohd Apandi N, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Apr;28(14):16948-16961.
    PMID: 33641100 DOI: 10.1007/s11356-021-12886-x
    Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.
  5. Akrima Abu Bakar, Muhammad Khairool Fahmy Mohd Ali, Norhazilan Md. Noor, Nordin Yahaya, Mardhiah Ismail, Ahmad Safuan A. Rashid
    Sains Malaysiana, 2017;46:1323-1331.
    Baram Delta Operation had been producing oil and gas since 1960's and serious pipelines failure was reported in the year of 2005. The final investigation has concluded that one of the species of bacteria that has been identified to cause microbiologically influenced corrosion, specifically known as sulfate reducing bacteria (SRB) was found to be one of the potential contributing factors to the incidents. This work investigates the potential use of ultraviolet (UV) radiation to inhibit the SRB consortium that was cultivated from the crude oil in one of the main trunk lines at Baram Delta Operation, Sarawak, Malaysia. The impact of UV exposure to bio-corrosion conditions on carbon steel coupon in certain samples for 28 days was discussed in this study. The samples were exposed to UV radiation based on variations of parameters, namely: time of UV exposure; and power of UV lamp. The significant changes on the amount of turbidity reading and metal loss of the steel coupon were recorded before and after experiment. The results showed that SRB growth has reduced rapidly for almost 90% after the UV exposure for both parameters as compared to the abiotic samples. Metal loss values were also decreased in certain exposure condition. Additionally, field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS) was performed to observe the biofilm layer formed on the metal surface after its exposure to SRB. The evidence suggested that the efficiency of UV treatment against SRB growth could be influenced by the particular factors studied
  6. Mohd Ali MKFB, Abu Bakar A, Md Noor N, Yahaya N, Ismail M, Rashid AS
    Environ Technol, 2017 Oct;38(19):2427-2439.
    PMID: 27875932 DOI: 10.1080/09593330.2016.1264486
    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.
  7. Mohammed AMA, Mohd Yunus NZ, Hezmi MA, A Rashid AS, Horpibulsuk S
    Environ Sci Pollut Res Int, 2021 Oct;28(40):57308-57320.
    PMID: 34086175 DOI: 10.1007/s11356-021-14718-4
    Proposals have been made by several researchers to conduct the sequestration of carbon dioxide (CO2) through calcium and magnesium-rich materials. From these materials, ground granulated blast furnace slag (GGBS) containing 5% magnesium and 45% calcium is seen to be a good candidate and is available to sequester CO2. This study intends to ascertain the ability to absorb CO2, sequester it, and increase treated kaolin strength with different content of GGBS under various carbonation periods with varying CO2 pressure. The impacts of carbonated GGBS on the mechanical attributes of soil were examined by conducting the unconfined compressive strength (UCS) test, and microstructure analysis was conducted to identify the changes in the structure and Crestline phase. Stationary carbonation in a triaxial test with pure CO2 was conducted to accelerate the carbonation process. The outcome indicates that the strength rises as the carbonation period rises. Likewise, UCS rises as the CO2 pressure rises from 100 to 200 kPa. It could be concluded that augmentation of the strength is because of carbonated calcium and magnesium products which stuff the soil voids. Changes occur on the microstructure level due to carbonation as well.
  8. Mohammed AMA, Mohd Yunus NZ, Hezmi MA, Abang Hasbollah DZ, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):14209.
    PMID: 33528775 DOI: 10.1007/s11356-021-12768-2
  9. Bui DT, Moayedi H, Kalantar B, Osouli A, Pradhan B, Nguyen H, et al.
    Sensors (Basel), 2019 Aug 17;19(16).
    PMID: 31426552 DOI: 10.3390/s19163590
    In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors-elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall-is prepared to develop the ANN and HHO-ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO-ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO-ANN = 0.773) the landslide pattern.
  10. Mohammed MA, Mohd Yunus NZ, Hezmi MA, Abang Hasbollah DZ, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Feb;28(8):8968-8988.
    PMID: 33443736 DOI: 10.1007/s11356-021-12392-0
    Environmental global issues affecting global warming, such as carbon dioxide (CO2), have attracted the attention of researchers around the world. This paper reviews and discusses the ground improvement and its contribution to reducing CO2 in the atmosphere. The approach is divided into three parts: the Streamlined Energy and Emissions Assessment Model (SEEAM), the replacement of soil stabilisation materials that lead to the emission of a large amount of CO2 with alternatives and mineral carbonation. A brief discussion about the first two is reviewed in this paper and a detailed discussion about mineral carbonation and its role in enhancing soil strength while absorbing a large amount of CO2. It is emphasised that natural mineral carbonation requires a very long time for a material to reach its full capacity to form CO2; as a result, different acceleration processes can be done from increasing pressure, temperature, the concentration of CO2 and the addition of various additives. In conclusion, it was found that magnesium is more attractive than calcium, and calcium is complicated in terms of strength behaviour. Magnesium has a larger capacity for CO2 sequestration and it has a greater potential to increase soil strength than calcium.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links