An experiment was conducted in Field Laboratory, Department of Entomology at Bangladesh Agricultural University, Mymensingh, during 2013 to manage the mango hopper, Idioscopus clypealis L, using three chemical insecticides, Imidacloprid (0.3%), Endosulfan (0.5%), and Cypermethrin (0.4%), and natural Neem oil (3%) with three replications of each. All the treatments were significantly effective in managing mango hopper in comparison to the control. Imidacloprid showed the highest efficacy in percentage of reduction of hopper population (92.50 ± 9.02) at 72 hours after treatment in case of 2nd spray. It also showed the highest overall percentage of reduction (88.59 ± 8.64) of hopper population and less toxicity to natural enemies including green ant, spider, and lacewing of mango hopper. In case of biopesticide, azadirachtin based Neem oil was found effective against mango hopper as 48.35, 60.15, and 56.54% reduction after 24, 72, and 168 hours of spraying, respectively, which was comparable with Cypermethrin as there was no statistically significant difference after 168 hours of spray. Natural enemies were also higher after 1st and 2nd spray in case of Neem oil.
Enterococcus gallinarum is a gram positive facultatively anaerobic bacteria that is typically found in mammalian intestinal tracts. It is generally not considered pathogenic to humans and is rarely reported. Here, we present the draft genome sequence data of Enterococcus gallinarum strain EGR748 isolated from a human clinical sample, and sequenced using the Illumina HiSeq 4000 system. The estimated whole genome size of the strain was 3,730,000 bp with a G + C content of 40.43%. The de novo assembly of the genome generated 55 contigs with an N50 of 208,509 bp. In addition, the Maximum Likelihood phylogenetic analysis based on the 16S rRNA sequence data accurately clustered EGR748 with other E. gallinarum strains. The data may be useful to demonstrate the capacity of this enterococcal species becoming the causal agents of nosocomial blood-stream infections. The genome dataset has been deposited at DDBJ/ENA/GenBank under the accession number JAABOR000000000.
A new approach to controlling the flow of a plasmatic electron packet at the interface between metallic and dielectric layers is described. The proposed metamaterial structure operates in the optical frequency range and can be used as a digital processing filter. It exhibits two double negative resonances and one special passband region, while the existence of a metal-dielectric nano-tunnel enhances electromagnetic wave-metal interactions. The structural arrangement of this metamaterial coupled with the tunnel layer can effectively control the electric field and allows digital encoding of electron packets.
Interferences and accuracy problem are one of the most talked issues in today's world for sensor technology. To deal with this contention, a microstrip framework consisting of a dual mode double negative (DNG) metamaterial based bandpass filter is presented in this article. To obtain the ultimate noise reduction bandpass filter, the proposed structure has to go through a series of development process, where the characteristics of the structure are tested to the limit. This filter is built on Rogers RT-5880 substrate with a 50Ω microstrip line. To pursue the elementary mode of resonant frequency, the ground layer of the structure is kept partially filled and a gradual analysis is executed on the prospective metamaterial (resonator) unit cell. Depending on the developed unit cell, the filter is constructed and fabricated to verify the concept, concentrating on GPS (1.55GHz), Earth Exploration-Satellite (2.70GHz) and WiMAX (3.60GHz) bands of frequencies. Moreover, the structure is investigated using Nicolson-Ross-Weir (NRW) approach to justify the metamaterial characteristics, and also tested on S-parameters, current distribution, electric and magnetic fields and quality factor. Having a propitious architecture and DNG characteristics, the proposed structure is suitable for bandpass filter for GPS, Earth Exploration-Satellite and WiMAX frequency sensing applications.
Lipoid proteinosis is a rare multisystem genodermatosis inherited as autosomal recessive trait. We report a case of lipoid proteinosis in a 10-year-old boy born to first-degree consanguineous parents presented with marked hoarseness of voice, accelerated photoaging appearance, enlarged and erythematous tongue with restricted movement and widespread dermatoses. Biopsy of oral mucosa revealed Periodic acid-Schiff (PAS)-positive amorphous eosinophilic hyaline deposits. Mutational analysis revealed a homozygous nonsense mutation with C to T substitution at nucleotide position 1246(c.1246C>T) in exon-8 of the extracellular matrix protein 1 gene leading to a stop codon. Both the parents were unaffected heterozygous carriers. To our knowledge, this is the first case report of lipoid proteinosis with evidence of a novel nonsense genetic mutation from Bangladesh.
Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.