Displaying all 7 publications

Abstract:
Sort:
  1. Omar, N. A., Praveena, S. M., Hashim, Z., Aris, A. Z.
    MyJurnal
    Rice is a carbohydrate, one of the plant-based foods that can accumulate heavy metal from soil and the irrigation water. Since total heavy metal always overestimates the amount of heavy metal available in rice, bioavailability of heavy metal is always preferred. Many studies have been done and found that in vitro methods offer an appealing alternative to human and animal studies. They can be simple, rapid, low in cost and may provide insights which not achievable in the in vivo studies. In vitro digestion model for rice may differ from other in vitro digestion models applied in soil or other type of foods studies. This review aims to provide an overview of in vitro digestion model used to determine bioavailability of heavy metal in rice, summarize health risk assessment application of heavy metal in rice studies and highlight the importance of health risk assessment to be included in the studies. Future exploration of in vitro digestion model and health risk assessment application on the bioavailability of heavy metal in rice was also suggested.
  2. Aris A. Z., Ismail F. A., Ng, H. Y., Praveena, S. M.
    MyJurnal
    This study was conducted using crab shells as a biosorbent to remove Cu and Cd with different initial concentrations of 1, 5, 10, 15, and 20 mg/L in a biosorption treatment process. Crab shells were selected as biosorbents due to their abundance in the environment and ready availability as waste products from the market place. This study aimed to determine the ability of Scylla Serrata shells to remove Cu and Cd in an aqueous solution, as well as to provide a comparison of the removal rate between the two metals. The data were incorporated into hydrochemical software, PHREEQC, to investigate the chemical speciation distribution of each heavy metal. The shells of S. serrata were found to have a significant (p< 0.05) ability to remove Cu and Cd following the treatment. After six hours of treatment, the crab shells had removed 60 to 80% of both metals. However, the highest removal percentage was achieved for Cu with up to 94.7% removal rate in 5 mg/L initial Cu concentration, while 85.1% of Cd was removed in 1 mg/L initial solution, respectively. It can be concluded that the shells of S. serrata could remove Cu and Cd better with significant results (p
  3. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
  4. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    Public Health, 2016 Feb;131:103-11.
    PMID: 26715317 DOI: 10.1016/j.puhe.2015.11.006
    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk.
  5. Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ
    Bull Environ Contam Toxicol, 2008 Jul;81(1):52-6.
    PMID: 18506379 DOI: 10.1007/s00128-008-9460-3
    Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I(geo)) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.
  6. Omar NA, Praveena SM, Aris AZ, Hashim Z
    Food Chem, 2015 Dec 1;188:46-50.
    PMID: 26041162 DOI: 10.1016/j.foodchem.2015.04.087
    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.
  7. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links