Displaying publications 1 - 20 of 234 in total

Abstract:
Sort:
  1. Maznah I, Loh SP, Waffaa MH
    Despite increasing interest in in nutraceuticals and their potential health benefits, not much is known about bioavailability of most of these nutraceutical compounds. Although they are considered dietary supplements and are subjected to a limited form of regulation, there is, however, a need to improve the efficacy and safety of these nutraceuticals. Additional research which defines the pharmacology, stability and bioavailability of these products is expected to gain strength and may offer a better understanding of their applicability in the prevention of disease conditions. This article reviews some aspects of nutraceutical bioavailability with examples from our work on the absorption studies of minerals from spirulina (Arthrospira plantensis) and gamma-oryzanol from rice bran (Oryza sativa) extract which employed human colon carcinoma (Caco-2) cell line and in vivo bioassays using animal models. Bioavailability of iron from spirulina was compared with its common source FeS04. Using the in vitro digestion protocol in combination with Caco-2 cell culture system, spirulina showed a high iron bioavailability compared to FeS04. The presence of other dietary factors (calcium, ascorbic acid, zinc, tannin and caffeine) was found to be not as significant as ferrous sulphate in affecting the iron uptake from spirulina. In vivo study showed that the efficacy of iron repletion in anaemic rats was enhanced in groups fed either commercial or cultured spirulina with improved haematological parameters of iron status. Further work on the behaviour and distribution of radiolabelled iron from spirulina has shown that iron-59 retained in the GIT of mice was lower in spirulina group compared to FeS04. Bioavailability study of gamme oryzanol was similarly conducted using Caco-2 cell as in vitro system and rabbit as in vivo model with the application of different formulations of gamma oryzanol in comparison with the natural form. Both systems showed that gamma oryzanol in its natural oil was poorly absorbed. However, when converted to other formulations, gamma oryzanol bioavailability was greatly increased by as much as 200 and 33 times more from the emulsion and microspheres respectively. These findings suggest that the efficacy of nutraceuticals in particular plant derived products which contain many phytochemicals should be assessed in terms of not only their potential health benefits such as antioxidant action but also their bioavailability in order to provide a more wholesome picture of their potential.
    Matched MeSH terms: Biological Availability
  2. Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, et al.
    Drug Deliv Transl Res, 2023 Jan;13(1):292-307.
    PMID: 35831776 DOI: 10.1007/s13346-022-01193-8
    Thymoquinone (TQ) is an antioxidant, anti-inflammatory, and hepatoprotective compound obtained from the black seed oil of Nigella sativa. However, high hydrophobicity, instability at higher pH levels, photosensitivity, and low oral bioavailability hinder its delivery to the target tissues. A self-nanoemulsifying drug delivery system (SNEDDS) was fabricated using the microemulsification technique to address these issues. Its physicochemical properties, thermodynamic stability studies, drug release kinetics, in vivo pharmacokinetics, and hepatoprotective activity were evaluated. The droplet size was in the nano-range (
    Matched MeSH terms: Biological Availability
  3. Haron DE, Chik Z, Noordin MI, Mohamed Z
    Iran J Basic Med Sci, 2015 Dec;18(12):1167-75.
    PMID: 26877845
    Transdermal preparations for testosterone are becoming popular because of their unique advantages such as avoidance of first-pass effect, convenience, improved bioavailability, and reduction of systemic side effects. A novel testosterone transdermal delivery system (TDDS) was developed using a palm oil base called HAMIN™ (a commercial product) and tested using in vitro and in vivo skin permeability test methods.
    Matched MeSH terms: Biological Availability
  4. Zakaria, M.P., Yap, C.K., Eugene Ng, Y.J., Tan, S.G.
    MyJurnal
    In this study, a polluted site at Kg. Pasir Puteh was assessed for heavy metal pollution by using
    transplanted caged mussel (Perna viridis) from a relatively clean population, Sg. Melayu; both are located in the Strait of Johore. For control purposes, the P. viridis from Kg. Pasir Puteh were also simultaneously transplanted in Sg. Melayu at the same time. It was found that Zn was the metal which got accumulated fastest in the transplanted mussel while Cd was the slowest. This study indicated that the byssus of Perna viridis was most effective for biomonitoring of Cd, Ni, Pb and Zn, while the shell could be used for the biomonitoring of Cu, Ni and Pb and the total soft tissue for the biomonitoring of Ni since they were able to accumulate and eliminate the respective metals well. By using mussel as a biomonitor, the present study found that Kg. Pasir Puteh, which is located in the eastern part of the Strait of Johore, had significantly higher contamination and bioavailabilities of Cd, Cu, Fe, Ni, Pb and Zn. Therefore, the use of the transplanted caged mussels is very useful for heavy metal assessment purposes since it can increase the validity of data interpretation by minimizing ecological factors.
    Matched MeSH terms: Biological Availability
  5. Choo, K.Y., Kho, C., Ong, Y.Y, Thoo, Y.Y, Lim, L.H., Tan, C.P., et al.
    MyJurnal
    Red dragon fruits (RDF) contain high levels of health-promoting betalains but its bioavailability in plasma is low (
    Matched MeSH terms: Biological Availability
  6. Sammour RMF, Chatterjee B, Taher M, Saleh MSM, Shahiwala A
    Curr Drug Deliv, 2021;18(9):1272-1279.
    PMID: 33605859 DOI: 10.2174/1567201818666210219105509
    BACKGROUND: Improved bioavailability of Aceclofenac (ACE) may be achieved through proniosomes, which are considered as one of the most effective drug delivery systems and are expected to represent a valuable approach for the development of better oral dosage form as compared to the existing product. However, the carrier in this system plays a vital role in controlling the drug release and modulating drug dissolution. Accordingly, a comparative study on different carriers can give a clear idea about the selection of carriers to prepare ACE proniosomes.

    OBJECTIVE: This study aims to evaluate the role of maltodextrin, glucose, and mannitol as carriers for in vitro and in vivo performance of Aceclofenac (ACE) proniosomes.

    METHODS: Three formulations of proniosomes were prepared by the slurry method using the 100 mg ACE, 500 mg span 60, 250 mg cholesterol with 1300mg of different carriers, i.e., glucose (FN1), maltodextrin (FN2), and mannitol (FN3). In vitro drug release studies were conducted by the USP paddle method, while in vivo studies were performed in albino rats. Pure ACE was used as a reference in all the tests. Lastly, the results were analyzed using the High-Pressure Liquid Chromatography (HPLC) method, and data were evaluated using further kinetic and statistical tools.

    RESULTS: No significant differences (p > 0.05) in entrapment efficiency (%EE) of FN1, FN2, and FN3 (82 ± 0.5%, 84 ± 0.66%, and 84 ± 0.34% respectively) were observed and formulations were used for further in vitro and in vivo evaluations. During in vitro drug release studies, the dissolved drug was found to be 42% for the pure drug, while 70%, 17%, and 30% for FN1, FN2, and FN3, respectively, at 15 min. After 24 hrs, the pure drug showed a maximum of 50% release while 94%, 80%, and 79% drug release were observed after 24 hr for FN1, FN2, and FN3, respectively. The in vivo study conducted on albino rats showed a higher Cmax and AUC of FN1 and FN2 in comparison with the pure ACE. Moreover, the relative oral bioavailability of proniosomes with maltodextrin and glucose as carriers compared to the pure drug was 183% and 112%, respectively. Mannitol- based formulation exhibited low bioavailability (53.7%) that may be attributed to its osmotic behavior.

    CONCLUSION: These findings confirm that a carrier plays a significant role in determining in vitro and in vivo performance of proniosomes and careful selection of carrier is an important aspect of proniosomes optimization.

    Matched MeSH terms: Biological Availability
  7. Balakumar P, Alqahtani T, Alqahtani A, Lakshmiraj RS, Singh G, Rupeshkumar M, et al.
    Curr Drug Metab, 2022;23(11):897-904.
    PMID: 36017834 DOI: 10.2174/1389200223666220825101212
    BACKGROUND: Curcumin is a polyphenolic compound derived from rhizomes of Curcuma longa, the golden spice. Curcumin has drawn much attention in recent years of biomedical research owing to its wide variety of biologic and pharmacologic actions. It exerts antiproliferative, antifibrogenic, anti-inflammatory, and antioxidative effects, among various imperative pharmacologic actions. In spite of its well-documented efficacies against numerous disease conditions, the limited systemic bioavailability of curcumin is a continuing concern. Perhaps, the poor bioavailability of curcumin may have curtailed its significant development from kitchen to clinic as a potential therapeutic agent. Subsequently, there have been a considerable number of studies over decades researching the scientific basis of curcumin's reduced bioavailability and eventually improvement of its bioavailability employing a variety of therapeutic approaches, for instance, in combination with piperine, the bio-active constituent of black pepper. Piperine has remarkable potential to modulate the functional activity of metabolic enzymes and drug transporters, and thus there has been a great interest in the therapeutic application of this widely used spice as alternative medicine and bioavailability enhancer. Growing body of evidence supports the synergistic potential of curcumin against numerous pathologic conditions when administered with piperine.

    CONCLUSION: In light of current challenges, the major concern pertaining to poor systemic bioavailability of curcumin, its improvement, especially in combination with piperine, and the necessity of additional research in this setting are together described in this review. Besides, the recent advances in the potential therapeutic rationale and efficacy of curcumin-piperine combination, a promising duo, against various pathologic conditions are delineated.

    Matched MeSH terms: Biological Availability
  8. Omar NA, Praveena SM, Aris AZ, Hashim Z
    Food Chem, 2015 Dec 1;188:46-50.
    PMID: 26041162 DOI: 10.1016/j.foodchem.2015.04.087
    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.
    Matched MeSH terms: Biological Availability*
  9. Teoh XY, Goh CF, Aminu N, Chan SY
    J Pharm Biomed Anal, 2021 Jan 05;192:113631.
    PMID: 33011581 DOI: 10.1016/j.jpba.2020.113631
    Atovaquone (ATQ) is a poorly soluble drug. Therefore, formulating ATQ into its supersaturated state through solid dispersion for bioavailability enhancement can be of great value. However, due to fast crystallising properties of ATQ, the quantification of ATQ in a supersaturated solid dispersion system can be complicated. Therefore, in pursuit of accurate quantification of such sample, a simple HPLC analytical method utilising a C18 column (250 × 4.6 mm ID, 5 μm) for the quantitation of ATQ has been developed and validated. Atovaquone elution using the proposed method demonstrated a retention time around 7.6 min with good linearity (R2 > 0.999). The system suitability is also detailed with the tailing factor at 1.365 ± 0.002. The addition of solubilising agent as sample treatment step aided in ensuring the accurate quantitation of the fast crystallising ATQ. The developed HPLC quantitation method has been successfully employed in the analysis of ATQ from solid dispersion samples in in vitro dissolution as well as ex vivo permeation studies for formulation development.
    Matched MeSH terms: Biological Availability
  10. Ng PQ, Ling LSC, Chellian J, Madheswaran T, Panneerselvam J, Kunnath AP, et al.
    Curr Pharm Des, 2020;26(36):4580-4590.
    PMID: 32520681 DOI: 10.2174/1381612826666200610111013
    Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.
    Matched MeSH terms: Biological Availability
  11. Qazi SU, Rahman SU, Awan AN, Al-Rashida M, Alharthy RD, Asari A, et al.
    Bioorg Chem, 2018 09;79:19-26.
    PMID: 29709568 DOI: 10.1016/j.bioorg.2018.03.029
    A series of hydrazinecarboxamide derivatives were synthesized and examined against urease for their inhibitory activity. Among the series, the 1-(3-fluorobenzylidene)semicarbazide (4a) (IC50 = 0.52 ± 0.45 µM), 4u (IC50 = 1.23 ± 0.32 µM) and 4h (IC50 = 2.22 ± 0.32 µM) were found most potent. Furthermore, the molecular docking study was also performed to demonstrate the binding mode of the active hydrazinecarboxamide with the enzyme, urease. In order to estimate drug likeness of compounds, in silico ADME evaluation was carried out. All compounds exhibited favorable ADME profiles with good predicted oral bioavailability.
    Matched MeSH terms: Biological Availability
  12. Ong SG, Ming LC, Lee KS, Yuen KH
    Pharmaceutics, 2016;8(3).
    PMID: 27571096 DOI: 10.3390/pharmaceutics8030025
    The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32%) and F2(98%)], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm), MS (357 nm) and NS (813 nm)], but with essentially similar encapsulation efficiencies (about 93%). Results indicated that the extent of bioavailability of griseofulvin was improved 1.7-2.0 times when given in the form of liposomes (F1) compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2), compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm) did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.
    Matched MeSH terms: Biological Availability
  13. Yap C, Al-Barwani S
    Sains Malaysiana, 2012;41:1063-1069.
    This study compared some allometric parameters (shell length, shell width, shell height, total dry weight of soft tissues, condition index and heavy metals (Cd, Cu, Pb and Zn) in the different soft tissues of Perna viridis collected from Sebatu and Muar estuary. It was found that the total dry weight of soft tissues and condition index of mussels collected from Sebatu were significantly (p<0.05) higher than those in Muar. The significantly (p<0.05) higher concentrations of Cu in most soft tissues and some of Cd indicated a higher bioavailability of Cu and Cd at Muar than Sebatu. In addition, the significantly (p<0.05) higher levels of Cu, Cd, Zn and Pb in surface sediments collected from Muar supported the observable anthropogenic impacts at Muar than Sebatu and hence, higher metal contamination at Muar than Sebatu. The higher condition index value in mussels recorded in Sebatu than in Muar was believed to be a result of higher metal contamination at Muar estuary.
    Matched MeSH terms: Biological Availability
  14. Yap C, Noorhaidah A
    Sains Malaysiana, 2011;40:1075-1085.
    In this paper we investigated the concentrations of Pb in seven different soft tissues (foot, cephalic tentacles, mantle muscle, gill, digestive caecum and remaining soft tissues) of 17 geographical populations of Telescopium telescopium collected from the intertidal area of Peninsular Malaysia. Two points can be presented based on the present study. First, as expected, different concentrations of Pb were found in the different soft tissues, indicating different mechanisms of bioaccumulation and regulations of Pb in these different tissues. By comparing the Pb concentrations in the similar tissues, spatial variation of Pb was found in the different sampling sites although there is no consistent pattern of Pb contamination in these sampling sites. Second, based on the correlation coefficients and multiple linear stepwise regression analysis between Pb concentrations in the different soft tissues and Pb concentrations in geochemical factions in the surface sediments, it is found that gill and digestive caecum can truly reflect Pb contamination and Pb bioavailabilities in the tropical intertidal mudflats. To our knowledge, this is the most comprehensive study on Pb in the different soft tissues of T. telescopium, in relation to the habitat sediments of the snails.
    Matched MeSH terms: Biological Availability
  15. Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE, et al.
    Pharmacol Res, 2023 Feb;188:106630.
    PMID: 36581166 DOI: 10.1016/j.phrs.2022.106630
    Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.
    Matched MeSH terms: Biological Availability
  16. Anjani QK, Sabri AHB, Hamid KA, Moreno-Castellanos N, Li H, Donnelly RF
    Carbohydr Polym, 2023 Nov 15;320:121194.
    PMID: 37659788 DOI: 10.1016/j.carbpol.2023.121194
    Carvedilol, a β-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 μm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.
    Matched MeSH terms: Biological Availability
  17. Fu JY, Meganathan P, Gunasegaran N, Tan DMY
    Food Res Int, 2023 Sep;171:113048.
    PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048
    Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
    Matched MeSH terms: Biological Availability
  18. Bose A, Wui WT
    Eur J Drug Metab Pharmacokinet, 2013 Sep;38(3):191-200.
    PMID: 23264125 DOI: 10.1007/s13318-012-0116-7
    The experimental study presents a brief and comprehensive perspective on the methods of developing a Level A in vitro-in vivo correlation (IVIVC) for extended oral dosage forms of water-insoluble drug domperidone. The study also evaluates the validity and predictability of in vitro-in vivo correlation using the convolution technique by one-compartmental first-order kinetic equation. The IVIVC can be substituted as a surrogate for in vivo bioavailability study for the documentation of bioequivalence studies as mandatory from any regulatory authorities. The in vitro drug release studies for different formulations (fast, moderate, slow) were conducted in different dissolution mediums. The f (2) metric (similarity factor) was used to analyze the dissolution data for determination of the most discriminating dissolution method. The in vivo pharmacokinetics parameters of all the formulations were determined by using liquid chromatography mass spectrometry (LC/MS) methods. The absorption rate constant and percentage of absorption of drugs at different time intervals were calculated by using data convolution. In vitro drug release and in vivo absorption correlation were found to be a linear correlation model, which was developed by using percent absorbed drug release versus percent drug dissolved from the three formulations. Internal and external validation was performed to validate the IVIVC. Predicted domperidone concentrations were obtained by convolution technique using first-order one-compartmental fitting equation. Prediction errors estimated for C (max) and AUC (0-infinity) were found to be within the limit.
    Matched MeSH terms: Biological Availability
  19. Mustafa SE, Mustafa S, Ismail A, Abas F, Abd Manap MY, Ahmed Hamdi OA, et al.
    Heliyon, 2020 Oct;6(10):e05298.
    PMID: 33134584 DOI: 10.1016/j.heliyon.2020.e05298
    The influence of commercial prebiotics (fructo-oligosaccharides and inulin) and sugars (glucose and sucrose) on enhancing equol production from soymilk isoflavones by Bifidobacterium longum BB536 and Bifidobacterium breve ATCC 15700 was evaluated in vitro. Sterilized soymilk was inoculated with each bacterial species at 37 °C for 48 h. The growth and β-glucosidase enzyme activity for the two Bifidobacterium species in soymilk throughout fermentation were assessed. The highest viable count for B. breve (8.75 log CFU/ml) was reached at 36 h and for B. longum (8.55 log CFU/ml) at 24 h. Both bacterial species displayed β-glucosidase activity. B. breve showed increased enzyme activity (4.126 U) at 36 h, while B. longum exhibited maximum activity (3.935 U) at 24 h of fermentation. Among the prebiotics screened for their effect in isoflavones transformation to equol, inulin delivered the highest effect on equol production. The co-culture of B. longum BB536 and B. breve ATCC15700 in soymilk supplemented with inulin produced the highest level (11.49 mmol/l) of equol at 48 h of fermentation process. Level of daidzin declined whereas that of daidzein increased, and then gradually decreased due to formation of equol when soymilk was fermented using bifidobacterial. This suggests that the nutritional value of soymilk may be increased by increasing bioavailability of the bioactive ingredients. Collectively these data identify probiotics and prebiotic combinations suitable for inclusion in soymilk to enhance equol production.
    Matched MeSH terms: Biological Availability
  20. Fahmi AH, Samsuri AW, Jol H, Singh D
    R Soc Open Sci, 2018 Nov;5(11):181328.
    PMID: 30564418 DOI: 10.1098/rsos.181328
    Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
    Matched MeSH terms: Biological Availability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links