Displaying all 9 publications

Abstract:
Sort:
  1. Patuwan SZ, Arshad SE
    Materials (Basel), 2021 May 28;14(11).
    PMID: 34071154 DOI: 10.3390/ma14112890
    Synthesis of zeolite T with a variety of desired characteristics necessitates extensive work in formulation and practical experiments, either by conventional hydrothermal methods or aided with different approaches and synthesis techniques, such as secondary growth or microwave irradiation. The objectives of this review are to adduce the potential work in zeolite T (Offretite-Erionite) synthesis, evaluating determining factors affecting the synthesis and quality of zeolite T crystals. Attention is given to extensive studies that interconnect with other significant findings.
  2. Ebrahimi S, Stephen Sipaut Mohd Nasri C, Bin Arshad SE
    PLoS One, 2021;16(5):e0251009.
    PMID: 34014966 DOI: 10.1371/journal.pone.0251009
    Hydroxyapatite (HAp)-[Ca10 (PO4)6(OH) 2] has a similar chemical composition to bone material, making it the main mineral supplement in bone-making. Due to its high biocompatibility, hydroxyapatite is widely used in the repair of bone deficiencies and in the production of dental or orthopedic implants. In this research, hydroxyapatite nanopowder was synthesized using a hydrothermal technique. Fourier Transform Infrared Spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to investigate the chemical structure and morphology of the synthesized hydroxyapatite powder. X-ray diffraction (XRD) was used to evaluate the phase analysis of HAp nanopowder. In addition, bioactivity HAp assessment was conducted by scanning electron microscopy (SEM) attached with Energy Dispersive X-Ray Spectroscopy (EDX) analysis. Response Surface Methodology (RSM) with central composite design (CCD) was used in order to determine the optimal conditions for yield, size, and crystallinity. Three independent variables (pH, temperature, and hydrothermal treatment time) were investigated. The yield was observed to increase in alkaline conditions; pH showed the greatest influence on the yield, size, and crystallinity of the synthesized hydroxyapatite, based on Analysis of Variance. The results of bioactivity evaluation are showed high bioactivity due to the formation of apatite on the surface of the synthesized nanopowder.
  3. Bohari NA, Siddiquee S, Saallah S, Misson M, Arshad SE
    Sensors (Basel), 2020 Nov 14;20(22).
    PMID: 33202533 DOI: 10.3390/s20226502
    In the present study, indium tin oxide (ITO) was used as a transparent working electrode for the development of an electrochemical sensor for the detection of mercury (II) ions (Hg2+). The electrode was modified by direct electrodeposition of polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) followed by optimization of the analyte and operating conditions, aiming to improve the selectivity, sensitivity and reliability of the electrode for mercury detection. Successful immobilization of the PANI and nanomaterials (MWCNTs and AuNPs) on the ITO electrode was confirmed by Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. The optimum conditions for mercury detection using the modified ITO electrode were pH 7.0 of Tris-HCl buffer (50 mM) in the presence of 1 mM methylene blue (MB) as a redox indicator, a scan rate of 0.10 V·s-1 and a 70 s interaction time. The electrochemical behavior of the modified electrode under the optimized conditions indicated a high reproducibility and high sensitivity of mercury detection. It is therefore suggested that the PANI/MWCNT/AuNP-modified ITO electrode could be a promising material for the development of on-site mercury detection tools for applications in fields such as diagnostics, the environment, safety and security controls or other industries.
  4. Rahman ML, Fui CJ, Ting TX, Sarjadi MS, Arshad SE, Musta B
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137923 DOI: 10.3390/polym12112521
    Industrial operations, domestic and agricultural activities worldwide have had major problems with various contaminants caused by environmental pollution. Heavy metal pollution in wastewater also a prominent issue; therefore, a well built and economical treatment technology is demanded for pollution-free wastewater. The present work emphasized pure cellulose extracted from jute fiber and further modification was performed by a free radical grafting reaction, which resulted in poly(methyl acrylate) (PMA)-grafted cellulose and poly(acrylonitrile)-grafted cellulose. Subsequently, poly(hydroxamic acid) and poly(amidoxime) ligands were prepared from the PMA-grafted cellulose and PAN-grafted cellulose, respectively. An adsorption study was performed using the desired ligands with heavy metals such as copper, cobalt, chromium and nickel ions. The binding capacity (qe) with copper ions for poly(hydroxamic acid) is 352 mg g-1 whereas qe for poly(amidoxime) ligand it was exhibited as 310 mg g-1. Other metal ions (chromium, cobalt and nickel) show significance binding properties at pH 6. The Langmuir and Freundlich isotherm study was also performed. The Freundlich isotherm model showed good correlation coefficients for all metal ions, indicating that multiple-layers adsorption was occurred by the polymer ligands. The reusability was evaluated and the adsorbents can be reused for 7 cycles without significant loss of removal performance. Both ligands showed outstanding metals removal capacity from the industrial wastewater as such 98% of copper can be removed from electroplating wastewater and other metals (cobalt, chromium, nickel and lead) can also be removed up to 90%.
  5. Rahman ML, Sarjadi MS, Arshad SE, Musta B, Heffeman MA, O'Reilly EJ, et al.
    J Nanosci Nanotechnol, 2021 03 01;21(3):1570-1577.
    PMID: 33404420 DOI: 10.1166/jnn.2021.18982
    Mesoporous silica supported adsorbents have been used towards metal ion removal from water due to their thermally stability and good sorption capacity. Thus, mesoporous silica-based methyl acrylate monomer (Silica-APTES-DPNO) was converted into hydroxamic acid (SBHA) by using oximation reaction and all products are analyzed by by FT-IR. The SBHA showed satisfactory binding properties with copper, cobalt, nickel and lead are 242, 206, 195 and 516 mg g-1, respectively, with the batch adsorption system was set to pH 6. The kinetics of metal ions binding obeyed the pseudo-1st-order process up to 60 min. In this study also consider the Langmuir and Freundlich isotherm to find out the sorption behavior. The isotherm study demonstrated the well fit with Freundlich isotherm (R² > 0.99). Thus, adsorption take place as a multilayer system, therefore, SBHA material is useful for the metal ions removal from water.
  6. Rahman ML, Wong ZJ, Sarjadi MS, Joseph CG, Arshad SE, Musta B, et al.
    Polymers (Basel), 2021 May 06;13(9).
    PMID: 34066308 DOI: 10.3390/polym13091486
    Toxic metals in the industrial wastewaters have been liable for drastic pollution hence a powerful and economical treatment technology is needed for water purification. For this reason, some pure cellulosic materials were derived from waste fiber to obtain an economical adsorbent for wastewater treatment. Conversion of cellulose into grafting materials such as poly(methyl acrylate)-grafted cellulose was performed by free radical grafting process. Consequently, poly(hydroxamic acid) ligand was produced from the grafted cellulose. The intermediate products and poly(hydroxamic acid) ligand were analyzed by FT-IR, FE-SEM, TEM, EDX, and XPS spectroscopy. The adsorption capacity (qe) of some toxic metals ions by the polymer ligand was found to be excellent, e.g., copper capacity (qe) was 346.7 mg·g-1 at pH 6. On the other hand, several metal ions such as cobalt chromium and nickel also demonstrated noteworthy sorption capacity at pH 6. The adsorption mechanism obeyed the pseudo second-order rate kinetic model due to the satisfactory correlated experimental sorption values (qe). Langmuir model isotherm study showed the significant correlation coefficient with all metal ions (R2 > 0.99), indicating that the single or monolayer adsorption was the dominant mode on the surface of the adsorbent. This polymer ligand showed good properties on reusability. The result shows that the adsorbent may be recycled for 6 cycles without any dropping of starting sorption capabilities. This polymeric ligand showed outstanding toxic metals removal magnitude, up to 90-99% of toxic metal ions can be removed from industrial wastewater.
  7. Rahman ML, Puah PY, Sarjadi MS, Arshad SE, Musta B, Sarkar SM
    J Nanosci Nanotechnol, 2019 09 01;19(9):5796-5802.
    PMID: 30961741 DOI: 10.1166/jnn.2019.16538
    Ion-imprinting polymers (IIPs) materials draw the great recognition because of the powerful selectivity to the desired metal ions. Therefore, the ion-imprinting polymer (Ce-IIP) was prepared by using cerium metal with amidoxime ligand as the complexing agent, in addition ethylene glycol dimethacrylate (EGDMA) and 2,2-azobisisobutyronitrile (AIBN) are crosslinking agent and free radical initiator, respectively. Aqueous HCl was applied to leach the cerium ions from the imprinted polymer for the creation of cavities of template, which is utilized for further cerium ions adsorption with high selectivity. The Ce-IIP was characterized by using ICP-MS, FE-SEM and also solid state analysis by UV-vis NIR spectroscopy. FT-IR study confirmed the complexation of the Ce-IIP was successful. The optimum pH was found to be 6 and the highest adsorption capacity was estimated about 145 mg g-1. Thus, the prepared Ce-IIP gave very good selectivity to cerium ions in the presence of lanthanide ions and also Ce-IIP can be reused 10 times without a substantial loss in adsorption capacity.
  8. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
  9. Rahman ML, Fui CJ, Sarjadi MS, Arshad SE, Musta B, Abdullah MH, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(27):34541-34556.
    PMID: 32557073 DOI: 10.1007/s11356-020-09462-0
    A waste material known as palm oil empty fruit bunch (EFB) is used as a source of cellulose for the development of polymeric materials for the removal of metal ions from industrial wastewater. A poly(acrylonitrile)-grafted palm cellulose copolymer was synthesized by a conventional free radical initiating process followed by synthesis of a poly(amidoxime) ligand by oximation reaction. The resulting products were characterized by FT-IR, FE-SEM, EDX, TGA, DSC, and XPS. The poly(amidoxime) ligand was used to coordinate with and extract a series of transition metal ions from water samples. The binding capacity (qe) of the ligand with the metal ions such as copper, iron, cobalt, nickel, and lead were 260, 210, 168, 172, and 272 mg g-1, respectively at pH 6. The adsorption process followed the pseudo-first-order kinetic model (R2 > 0.99) and as well as the Freundlich isotherm model (R2 > 0.99) indicating the occurrence of a multi-layer adsorption process in the amidoxime ligand adsorbent. Results from reusability studies show that the ligand can be recycled for at least 10 cycles without any significant losses to its initial adsorption capacity. The synthesized polymeric ligand was shown to absorb heavy metals from electroplating wastewater with up to 95% efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links