Displaying all 7 publications

  1. Bakthavatchalam B, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rashedi A, et al.
    Nanomaterials (Basel), 2021 Jan 27;11(2).
    PMID: 33513770 DOI: 10.3390/nano11020320
    Since technology progresses, the need to optimize the thermal system's heat transfer efficiency is continuously confronted by researchers. A primary constraint in the production of heat transfer fluids needed for ultra-high performance was its intrinsic poor heat transfer properties. MXene, a novel 2D nanoparticle possessing fascinating properties has emerged recently as a potential heat dissipative solute in nanofluids. In this research, 2D MXenes (Ti3C2) are synthesized via chemical etching and blended with a binary solution containing Diethylene Glycol (DEG) and ionic liquid (IL) to formulate stable nanofluids at concentrations of 0.1, 0.2, 0.3 and 0.4 wt%. Furthermore, the effect of different temperatures on the studied liquid's thermophysical characteristics such as thermal conductivity, density, viscosity, specific heat capacity, thermal stability and the rheological property was experimentally conducted. A computational analysis was performed to evaluate the impact of ionic liquid-based 2D MXene nanofluid (Ti3C2/DEG+IL) in hybrid photovoltaic/thermal (PV/T) systems. A 3D numerical model is developed to evaluate the thermal efficiency, electrical efficiency, heat transfer coefficient, pumping power and temperature distribution. The simulations proved that the studied working fluid in the PV/T system results in an enhancement of thermal efficiency, electrical efficiency and heat transfer coefficient by 78.5%, 18.7% and 6%, respectively.
  2. Das L, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rubbi F
    Nanomaterials (Basel), 2020 Jul 14;10(7).
    PMID: 32674465 DOI: 10.3390/nano10071372
    In recent years, solar energy technologies have developed an emerging edge. The incessant research to develop a power source alternative to fossil fuel because of its scarcity and detrimental effects on the environment is the main driving force. In addition, nanofluids have gained immense interest as superior heat transfer fluid in solar technologies for the last decades. In this research, a binary solution of ionic liquid (IL) + water based ionanofluids is formulated successfully with two dimensional MXene (Ti3C2) nano additives at three distinct concentrations of 0.05, 0.10, and 0.20 wt % and the optimum concentration is used to check the performance of a hybrid solar PV/T system. The layered structure of MXene and high absorbance of prepared nanofluids have been perceived by SEM and UV-vis respectively. Rheometer and DSC are used to assess the viscosity and heat capacity respectively while transient hot wire technique is engaged for thermal conductivity measurement. A maximum improvement of 47% in thermal conductivity is observed for 0.20 wt % loading of MXene. Furthermore, the viscosity is found to rise insignificantly with addition of Ti3C2 by different concentrations. Conversely, viscosity decreases substantially as the temperature increases from 20 °C to 60 °C. However, based on their thermophysical properties, 0.20 wt % is found to be the optimum concentration. A comparative analysis in terms of heat transfer performance with three different nanofluids in PV/T system shows that, IL+ water/MXene ionanofluid exhibits highest thermal, electrical, and overall heat transfer efficiency compared to water/alumina, palm oil/MXene, and water alone. Maximum electrical efficiency and thermal efficiency are recorded as 13.95% and 81.15% respectively using IL + water/MXene, besides that, heat transfer coefficients are also noticed to increase by 12.6% and 2% when compared to water/alumina and palm oil/MXene respectively. In conclusion, it can be demonstrated that MXene dispersed ionanofluid might be great a prospect in the field of heat transfer applications since they can augment the heat transfer rate considerably which improves system efficiency.
  3. Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, et al.
    Bioengineering (Basel), 2019 Apr 16;6(2).
    PMID: 30995765 DOI: 10.3390/bioengineering6020033
    To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C-H, C-O, and C=C bond exists in the bio-char of the sample.
  4. Sharath BN, Venkatesh CV, Afzal A, Aslfattahi N, Aabid A, Baig M, et al.
    Materials (Basel), 2021 May 28;14(11).
    PMID: 34071305 DOI: 10.3390/ma14112895
    Lightweight composite materials have recently been recognized as appropriate materials have been adopted in many industrial applications because of their versatility. The present research recognizes the inclusion of ceramics such as Gr and B4C in manufacturing AMMCs through stir casting. Prepared composites were tested for hardness and wear behaviour. The tests' findings revealed that the reinforced matrix was harder (60%) than the un-reinforced alloy because of the increased ceramic phase. The rising content of B4C and Gr particles led to continuous improvements in wear resistance. The microstructure and worn surface were observed through SEM (Scanning electron microscope) and revealed the formation of mechanically mixed layers of both B4C and Gr, which served as the effective insulation surface and protected the test sample surface from the steel disc. With the rise in the content of B4C and Gr, the weight loss declined, and significant wear resistance was achieved at 15 wt.% B4C and 10 wt.% Gr. A response surface analysis for the weight loss was carried out to obtain the optimal objective function. Artificial neural network methodology was adopted to identify the significance of the experimental results and the importance of the wear parameters. The error between the experimental and ANN results was found to be within 1%.
  5. Rashid B, Anwar A, Shahabuddin S, Mohan G, Saidur R, Aslfattahi N, et al.
    Materials (Basel), 2021 Aug 04;14(16).
    PMID: 34442891 DOI: 10.3390/ma14164370
    The MXenes are a novel family of 2-D materials with promising biomedical activity, however, their anticancer potential is still largely unexplored. In this study, a comparative cytotoxicity investigation of Ti3C2 MXenes with polypropylene glycol (PPG), and polyethylene glycol (PEG) surface-modified 2-D Ti3C2 MXene flakes has been conducted towards normal and cancerous human cell lines. The wet chemical etching method was used to synthesize MXene followed by a simple chemical mixing method for surface modification of Ti3C2 MXene with PPG and PEG molecules. SEM and XRD analyses were performed to examine surface morphology and elemental composition, respectively. FTIR and UV-vis spectroscopy were used to confirm surface modification and light absorption, respectively. The cell lines used to study the cytotoxicity of MXene and surface-modified MXenes in this study were normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells. These cell lines were also used as controls (without exposure to study material and irradiation) to measure their baseline cell viability under the same lab environment. The surface-modified MXenes exhibited a sharp reduction in cell viability towards both normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells but cytotoxicity was more pronounced towards cancerous cell lines. This may be due to the difference in cell metabolism and the occurrence of high pre-existing levels of reactive oxygen species (ROS) within cancerous cells. The highest toxicity towards both normal and cancerous cell lines was observed with PEGylated MXenes followed by PPGylated and bare MXenes. The normal cell's viability was barely above 70% threshold with 250 mg/L PEGylated MXene concentration whereas PPGylated and bare MXene were less toxic towards normal cells, even at 500 mg/L concentration. Moreover, the toxicity was found to be directly related to the type of cell lines. In general, the HaCaT cell line exhibited the lowest toxicity while toxicity was highest in the case of the A375 cell line. The photothermal studies revealed high photo response for PEGylated MXene followed by PPGylated and bare MXenes. However, the PPGylated MXene's lower cytotoxicity towards normal cells while comparable toxicity towards malignant cells as compared to PEGylated MXenes makes the former a relatively safe and effective anticancer agent.
  6. Nagaraja S, Kodandappa R, Ansari K, Kuruniyan MS, Afzal A, Kaladgi AR, et al.
    Materials (Basel), 2021 Sep 13;14(18).
    PMID: 34576489 DOI: 10.3390/ma14185261
    The effect of reinforcements and thermal exposure on the tensile properties of aluminium AA 5083-silicon carbide (SiC)-fly ash composites were studied in the present work. The specimens were fabricated with varying wt.% of fly ash and silicon carbide and subjected to T6 thermal cycle conditions to enhance the properties through "precipitation hardening". The analyses of the microstructure and the elemental distribution were carried out using scanning electron microscopic (SEM) images and energy dispersive spectroscopy (EDS). The composite specimens thus subjected to thermal treatment exhibit uniform distribution of the reinforcements, and the energy dispersive spectrum exhibit the presence of Al, Si, Mg, O elements, along with the traces of few other elements. The effects of reinforcements and heat treatment on the tensile properties were investigated through a set of scientifically designed experimental trials. From the investigations, it is observed that the tensile and yield strength increases up to 160 °C, beyond which there is a slight reduction in the tensile and yield strength with an increase in temperature (i.e., 200 °C). Additionally, the % elongation of the composites decreases substantially with the inclusion of the reinforcements and thermal exposure, leading to an increase in stiffness and elastic modulus of the specimens. The improvement in the strength and elastic modulus of the composites is attributed to a number of factors, i.e., the diffusion mechanism, composition of the reinforcements, heat treatment temperatures, and grain refinement. Further, the optimisation studies and ANN modelling validated the experimental outcomes and provided the training models for the test data with the correlation coefficients for interpolating the results for different sets of parameters, thereby facilitating the fabrication of hybrid composite components for various automotive and aerospace applications.
  7. Auliya RZ, Ooi PC, Sadri R, Talik NA, Yau ZY, Mohammad Haniff MAS, et al.
    Sci Rep, 2021 Aug 31;11(1):17432.
    PMID: 34465806 DOI: 10.1038/s41598-021-96909-0
    A new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm-2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links