Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Nutrition plays a significant role in the prevention and treatment of common diseases. Some superb dietary choices such as functional foods and nutriments can surely help fight against certain diseases and provide various advantages to an individual's health. Plants have been regarded as a primary source of highly effective conventional drugs leading to the development of potential novel agents, which may boost the treatment. Growing demand for functional foods acts as an aid for the producers to expand in agriculture and pave the way for innovation and research by the nutraceutical industry. The given review highlights how various functional foods such as tomatoes, chocolates, garlic and flaxseed are currently being defined, their sources, benefit in treating various ailments and the challenges with their use.
Spondias species have been used in traditional medicine for different human ailments. In this study, the effect of different solvents (ethyl acetate, methanol, and water) and extraction methods (infusion, maceration, and Soxhlet extraction) on the enzyme inhibitory activity against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, α-glucosidase, and antioxidant properties of S. mombin and S. dulcis leaves and stem bark were evaluated. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) yield in the identification and/or annotation of 98 compounds showing that the main secondary metabolites of the plant are gallic and ellagic acids and their derivatives, ellagitannins, hydroxybenzoic, hydroxycinnamic, acylquinic acids and flavonols, flavanones, and flavanonols. The leaves infusion of both Spondias species showed highest inhibition against acetylcholinesterase (AChE) (10.10 and 10.45 mg galantamine equivalent (GALAE)/g, for S. dulcis and S. mombin, respectively). The ethyl acetate extracts of the stem bark of S. mombin and S. dulcis actively inhibited α-glucosidase. Methanolic extracts of the leaves and stem bark exhibited highest tyrosinase inhibitory action. Antioxidant activity and higher levels of phenolics were observed for the methanolic extracts of Spondias. The results suggested that the Spondias species could be considered as natural phyto-therapeutic agents in medicinal and cosmeceutical applications.
Meningitis is an inflammation of the protective membranes called meninges and fluid adjacent the brain and spinal cord. The inflammatory progression expands all through subarachnoid space of the brain and spinal cord and occupies the ventricles. The pathogens like bacteria, fungi, viruses, or parasites are main sources of infection causing meningitis. Bacterial meningitis is a life-threatening health problem that which needs instantaneous apprehension and treatment. Nesseria meningitidis, Streptococcus pneumoniae, and Haemophilus flu are major widespread factors causing bacterial meningitis. The conventional drug delivery approaches encounter difficulty in crossing this blood-brain barrier (BBB) and therefore are insufficient to elicit the desired pharmacological effect as required for treatment of meningitis. Therefore, application of nanoparticle-based drug delivery systems has become imperative for successful dealing with this deadly disease. The nanoparticles have ability to across BBB via four important transport mechanisms, i.e., paracellular transport, transcellular (transcytosis), endocytosis (adsorptive transcytosis), and receptor-mediated transcytosis. In this review, we reminisce distinctive symptoms of meningitis, and provide an overview of various types of bacterial meningitis, with a focus on its epidemiology, pathogenesis, and pathophysiology. This review describes conventional therapeutic approaches for treatment of meningitis and the problems encountered by them while transmitting across tight junctions of BBB. The nanotechnology approaches like functionalized polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion, liposomes, transferosomes, and carbon nanotubes which have been recently evaluated for treatment or detection of bacterial meningitis have been focused. This review has also briefly summarized the recent patents and clinical status of therapeutic modalities for meningitis.
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Obesity is a multifaceted disease encompassing deposition of an unnecessary amount of fat which upsurges the possibility of other complications, viz., hypertension and certain type of cancers. Although obesity results from combination of genetic factors, improper diet and inadequate physical exercise also play a major role in its onset. The present study aims at exploring the anti-obesity activity of Crinum latifolia leaf extract in obese rats. The leaves were extracted using hydroalcoholic extraction which was later diluted with water and given to obese rats. The dosing was started from the 4th week (by oral administration of extract of Crinum latifolia (100 mg/kg and 200 mg/kg) and combination of Crinum latifolia leaf extract 200 mg/kg and orlistat 30 mg/kg) till the 10th week. Various angiogenic, antioxidant, biochemical, and inflammatory biomarkers were assessed at the end of the study. The obese symptoms were progressively reduced in treatment groups when compared to disease control groups. The angiogenic parameters and inflammatory parameters were consequently reduced in treatment groups. The oxidative parameters superoxide dismutase (SOD) and catalase were gradually increased, while levels of TBARS were reduced in treatment groups showing antioxidant nature of leaf hydroalcoholic extract. The Crinum latifolia leaf extract possesses anti-obesity properties and therefore can be used as a therapeutic option in the management of obesity.