Displaying all 6 publications

Abstract:
Sort:
  1. Fan HY, Dumont MJ, Simpson BK
    Curr Res Food Sci, 2020 Nov;3:146-157.
    PMID: 32914130 DOI: 10.1016/j.crfs.2020.04.002
    The recovery of gelatins from Atlantic salmon (Salmo salar) skin for film formation and characterization was studied. Fish skins pre-treated with trypsin (250 U/g) produced the highest hydroxyproline content (7.41 ± 0.49 mg hydroxyproline/g treated skin) and yield (53.05 ± 4.38%) of gelatin, as compared to the use of saline solution. Pre-treatment with a lower concentration of trypsin (1 U/g) at a shorter pre-treatment time successfully reduced the degradation of gelatin with co-production of high molecular weight α-chains. Gelatin was further extracted by a trypsin-aided process for film formation and characterization. Films with increasing protein concentration (from 1 to 5%, w/v) exhibited higher thickness, tensile strength, and elongation at break (EAB), but a marked decrease in EAB for films with 6 and 7% (w/v). Films with 5% proteins showed higher thickness, lower tensile strength and higher EAB with increasing concentrations of glycerol (from 10 to 50% of proteins, w/w). All films exhibited high water uptake, decrease in light transmission and an increase in opacity as the protein and glycerol contents increased. Electrophoretic studies showed that the increase in the mechanical properties of the films was correlated with the increase in protein concentration, owing to the increased content of high molecular weight chain fractions. Furthermore, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) revealed the interaction between the proteins and glycerol for all films. This study demonstrated the viability of the trypsin supplementation process to obtain salmon skin gelatin for film formation.
  2. Fan H, Dumont MJ, Simpson BK
    J Food Sci Technol, 2017 Nov;54(12):4000-4008.
    PMID: 29085142 DOI: 10.1007/s13197-017-2864-5
    Gelatin from salmon (Salmo salar) skin with high molecular weight protein chains (α-chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.
  3. Fan HY, Duquette D, Dumont MJ, Simpson BK
    Int J Biol Macromol, 2018 Dec;120(Pt A):263-273.
    PMID: 30130612 DOI: 10.1016/j.ijbiomac.2018.08.084
    Composite films comprised of salmon (Salmo salar) skin gelatin and zein were prepared via crosslinking with glutaraldehyde. Response surface methodology (RSM) was used to optimize film composition to maximize tensile strength (TS) and elongation at break (EAB), and to minimize water solubility (WS) of the films. The significant (P 
  4. Arshad A, Rashid R, Benjamin K
    Mod Rheumatol, 2007;17(6):470-5.
    PMID: 18084698 DOI: 10.1007/s10165-007-0628-1
    Rheumatoid arthritis (RA) is a chronic joint disease of undetermined cause that is associated with significant disability. Low-grade fever, anemia, and weight loss are recognized extra-articular features associated with increased disease activity. Weight loss and cachexia are well-established features of RA. The mechanism behind weight loss in RA is not known and may be multifactorial. Reduced energy intake and hypermetabolism are the major two factors frequently implicated in the etiology of RA cachexia. One would expect the effect of the above two factors to be highest during increased disease activity and lowest during remission. The purpose of this study was: (a) to establish whether in RA patients changes in body composition mirror changes in disease activity, (b) to investigate the relation between the energy expenditures and weight loss, (c) to examine the dietary energy intake and its role in weight loss in RA patients, and (d) to investigate the relation between the cytokine interleukin (IL)-6 and other variables including resting energy expenditure (REE), body composition, and acute phase reactants. Fourteen patients with RA were age-, sex-, and race-matched with 14 controls from patients with noninflammatory diseases/soft tissue rheumatism. The measurements included the following: disease activity assessment, anthropometric measurements, indirect calorimetry, and measurements of dietary intake. Blood was collected to measure the acute-phase reactants and IL-6 levels. We demonstrated that loss of fat-free mass (FFM) might accelerate during times of increased disease activity and is only partially restored during periods of reduced disease activity. This probably means that the extent of cachexia in RA patients is determined by the frequency and intensity of disease activity (flare) for a given disease duration. Hypermetabolism with increased REE was more evident during increased disease activity. Hypermetabolism in the face of increased energy intake continued to cause loss of the FFM. Interleukin-6 correlates with increased REE and erythrocyte sedimentation rate. There was no direct association between IL-6 level and low FFM. We conclude that loss of FFM is common in RA, cytokine production in RA is associated with altered energy metabolism, and preservation of FFM is important in maintaining good quality of life in patients with RA.
    Study site: Rheumatology clinic, Putra Specialist Centre, Kedah
  5. Sudo M, Yamaguchi Y, Späth PJ, Matsumoto-Morita K, Ong BK, Shahrizaila N, et al.
    PLoS One, 2014;9(9):e107772.
    PMID: 25259950 DOI: 10.1371/journal.pone.0107772
    Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain-Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain-Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
  6. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links