Mangrove located near urban area is exposed to various industrial discharge including heavy metals. Mangrove soil is capable of accumulating and storing these heavy metals. Heavy metals are toxic and non-biodegradable, so their accumulations affect water quality, while bioaccumulation and bio-assimilation of heavy metals in mangrove organisms negatively impact the food chain. Bacteria-derived biosurfactants are compounds capable of removing heavy metals from soil and sediment. Furthermore, environmentally friendly properties, such as biodegradability and low toxicity, exhibited by biosurfactants make them a suitable replacement for chemical surfactants for remediation efforts. This study was conducted to investigate the lead- (Pb) and zinc- (Zn) removing capability of rhamnolipid (RL), a type of biosurfactant produced by marine bacterium, Pseudomonas aeruginosa UMTKB-5. Rhamnolipid solutions of three different concentrations (25 mg/L, 50 mg/L and 75 mg/L) were added to mangrove soil and incubated for 7 days. The removal of Pb from soils was up to 18.3% using 25 mg/L RL solution, while 50 mg/L RL solution removed 48.3%, and 75 mg/L RL solution removed 75.9% Pb over time. Meanwhile, zinc removal of 25 mg/L RL solution was up to 24.9%, while 50 mg/L removed 16.5%, and 75 mg/L RL removed 30.5% of Zn. The results showed that RL from P. aeruginosa UMTKB-5 could be a potential biomaterial to be used to remediate heavy metals in sediment.
Bacteria capable of degrading polyhydroxyalkanoates (PHA) by secreting extracellular depolymerase enzymes were isolated from water and soil samples collected from various environments in Malaysia. A total of 8 potential degraders exhibited clear zones on poly(3-hydroxybutyrate) [P(3HB)] based agar, indicating the presence of extracellular PHA depolymerase. Among the isolates, DP5 exhibited the largest clearing zone with a degradation index of 6.0. The highest degradation activity of P(3HB) was also observed with depolymerase enzyme of DP5 in mineral salt medium containing P(3HB). Based on biochemical characterization and 16S rRNA cloning and sequencing, isolate DP5 was found to belong to the genus Acidovorax and subsequently named as Acidovorax sp. DP5. The highest extracellular depolymerase enzyme activity was achieved when 0.25% (w/v) of P(3HB) and 1 g/L of urea were used as carbon and nitrogen source, respectively, in the culture media. The most suitable assay condition of the depolymerase enzyme in response to pH and temperature was tested. The depolymerase produced by strain Acidovorax sp. DP5 showed high percentage of degradation with P(3HB) films in an alkaline condition with pH 9 and at a temperature of 40°C.
Marine sponges are acknowledged as a bacterial hotspot and resource of novel natural products or genetic material with industrial or commercial potential. However, sponge-associated bacteria are difficult to be cultivated and the production of their desirable metabolites is inadequate in terms of rate and quantity, yet bioinformatics and metagenomics tools are steadily progressing. Bacterial diversity profiles of high-microbial-abundance wild tropical marine sponges Aaptos aaptos and Xestospongia muta were obtained by sample collection at Pulau Bidong and Pulau Redang islands, 16S rRNA amplicon sequencing on Illumina HiSeq2500 platform (250 bp paired-end) and metagenomics analysis using Ribosomal Database Project (RDP) classifier. Raw sequencing data in fastq format and relative abundance histograms of the dominant 10 species are available in the public repository Discover Mendeley Data (http://dx.doi.org/10.17632/zrcks5s8xp). Filtered sequencing data of operational taxonomic unit (OTU) with chimera removed is available in NCBI accession numbers from MT464469 to MT465036.
We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.
Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is noted for its high biocompatibility, which makes it an excellent candidate for biopharmaceutical applications. The wild-type Cupriavidus sp. USMAA1020 strain is able to synthesize P(3HB-co-4HB) copolymers with different 4HB monomer compositions (up to 70mol%) in shaken flask cultures. Combinations of 4HB carbon precursors consisting of 1,6-hexanediol and γ-butyrolactone were applied for the production of P(3HB-co-4HB) with different 4HB molar fraction. A sharp increase in 4HB monomer composition was attained by introducing additional copies of PHA synthase gene (phaC), responsible for P(3HB-co-4HB) polymerization. The phaC of Cupriavidus sp. USMAA1020 and Cupriavidus sp. USMAA2-4 were cloned and heterologously introduced into host, wild-type Cupriavidus sp. USMAA1020. The gene dosage treatment resulted in the accumulation of 93mol% 4HB by the transformant strains when grown in similar conditions as the wild-type USMAA1020. The PHA synthase activities for both transformants were almost two-fold higher than the wild-type. The ability of the transformants to produce copolymers with high 4HB monomer composition was also tested in large scale production system using 5L and 30L bioreactors with a constant oxygen mass transfer rate. The 4HB monomer composition could be maintained at a range of 83-89mol%. The mechanical and thermal properties of copolymers improved with increasing 4HB monomer composition. The copolymers produced could be tailored for specific biopharmaceutical applications based on their properties.
A significant source of microplastics is from the usage of microbeads in the market since petrochemical plastic bead is a material used in cosmetic scrubs. A possible way to counteract the problem is by the substitution of synthetic plastic to natural biodegradable polymer. Polyhydroxyalkanoate (PHA) is a general class of thermoplastic microbial polymer and it is the best alternative to some petrochemical plastics due to its biodegradability. Some PHA has earned its way into cosmetic application due to its biocompatibility. This data article reports data on the development of biodegradable microbeads by using the double emulsion solvent evaporation technique. Our data describe the extraction of biopolymer from marine bacteria that was cultivated in shaken flask culture, removal of endotoxins using oxidizing agent, the production of microbeads using a peristaltic pump with a specific flowrate and silicon tubing, and the cytotoxicity of the microbeads.
A natural biodegradable polymer, polyhydroxyalkanoate (PHA), was adjuvanted with a vaccine seed to observe the biomaterial's ability in enhancing an immune response in rats. The adjuvant potential of PHA was tested using the whole-killed Pasteurella multocida B:2 (PMB2) vaccine in Sprague Dawley (SD) rats to detect changes in serum immunoglobulin G (IgG) and immunoglobulin M (IgM) responses. A common PHA, poly(3-hydroxybutyrate) [P(3HB)], from Bacillus megaterium UMTKB-1 was constructed into microparticles using the solvent evaporation method. Twelve SD rats were divided into four treatment groups: 1) non-treatment as negative control, 2) P(3HB) adjuvant, 3) PMB2 vaccine, and 4) adjuvanted-P(3HB)/PMB2 vaccine groups, which were intramuscularly vaccinated twice. Immunoglobulins IgG and IgM levels were used as markers of the immune response induced by the adjuvanted-P(3HB)/PMB2 vaccine and analysed over an eight-week study period. The group vaccinated specifically with adjuvanted-P(3HB)/PMB2 vaccine had higher concentrations of immunoglobulins compared to other treatment groups, hence demonstrating the potential of the adjuvant to enhance immune response. Findings showed a need to delay the delivery of the second booster dose to determine the appropriate regime for the adjuvanted-P(3HB)/PMB2 vaccine.
The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaC(Cs)). PhaC(Cs) showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaC(Cs) expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaC(Cs) was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaC(Cs) of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaC(Cs) is a naturally occurring, highly active PHA synthase with superior polymerizing ability.
Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
Biodegradable plastics are being the substitute for synthetic plastics and widely been used in order to combat plastic pollution. Yet not all biodegradable plastics are degradable especially when it does not meet its favourable conditions, and also when it comes to aquatic environments. Therefore, this review is intended to highlight the types of various biodegradable plastic synthesized and commercialised and identify the limitations and advantages of these micro-bioplastics or residual bioplastic upon degradation in various aquatic environments. This review paper highlights on biodegradable plastic, degradation of biodegradable plastic in aquatic environments, application of biodegradable plastic, polylactic acid (PLA), Polyhydroxyalkanoates (PHA), Polysaccharide derivatives, Poly (amino acid), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate terephthalate (PBA/T), limitations and advantages of biodegradable plastic degradation in aquatic environment. There is no limit on the period for literature search as this field is continuously being studied and there is no wide range of studies. Biodegradable plastic that is commercially available has its own advantages and limitations respectively upon degradation in both freshwater and marine environments. There is a growing demand for bioplastic as an alternative to synthetic plastic which causes plastic waste pollution. Thus, it is crucial to understand the biodegradation of biodegradable plastic in depth especially in aquatic environments. Moreover, there are also very few studies investigating the degradation and migration of micro-bioplastics in aquatic environments.
Polyhydroxyalkanoates (PHA) are biodegradable polymers that are considered able to replace synthetic plastic because their biochemical characteristics are in some cases the same as other biodegradable polymers. However, due to the disadvantages of costly and non-renewable carbon sources, the production of PHA has been lower in the industrial sector against conventional plastics. At the same time, first-generation sugar-based cultivated feedstocks as substrates for PHA production threatens food security and considerably require other resources such as land and energy. Therefore, attempts have been made in pursuit of suitable sustainable and affordable sources of carbon to reduce production costs. Thus, in this review, we highlight utilising waste lignocellulosic feedstocks (LF) as a renewable and inexpensive carbon source to produce PHA. These waste feedstocks, second-generation plant lignocellulosic biomass, such as maize stoves, dedicated energy crops, rice straws, wood chips, are commonly available renewable biomass sources with a steady supply of about 150 billion tonnes per year of global yield. The generation of PHA from lignocellulose is still in its infancy, hence more screening of lignocellulosic materials and improvements in downstream processing and substrate pre-treatment are needed in the future to further advance the biopolymer sector.
Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
The fouling phenomenon grabbed global attention and caused huge economic losses specifically in marine-related industries. Sessile behavior exposed the sponge to the risk of fouling. However, their bodies remained free from foulers, which were attributed to the chemical defense system. The objectives of this study were to determine the antibiofilm activity of the marine sponge, Stylissa carteri, and to characterize the isolated compound involved. The antibiofilm activity of S. carteri methanolic crude extract (MCE) and fractions was tested against biofilm-producing bacteria, Pseudomonas aeruginosa, using two different modes of crystal violet biofilm assays: preventive and detachment. Besides that, the disc-diffusion test was conducted to screen the antibacterial activity against gram-positive and gram-negative bacteria while a cytotoxicity assay was conducted on the HepG2 cell line. Bioassay-guided fractionation was carried out using vacuum liquid chromatography (VLC) and solid phase extraction using a C18 Sep-Pak Cartridge. The crystal compound was isolated and characterized through thin-layer chromatography (TLC), Fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LCMS), and nuclear magnetic resonance (NMR) spectroscopy. The S. carteri MCE showed a promising result with a half-maximal inhibitory concentration (IC50) of 20.22 μg/mL in the preventive assay, while no IC50 was determined in the detachment assay since all inhibitions
Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.