Displaying all 7 publications

Abstract:
Sort:
  1. Ewane EB, Bajaj S, Velasquez-Camacho L, Srinivasan S, Maeng J, Singla A, et al.
    Heliyon, 2023 Oct;9(10):e20408.
    PMID: 37842597 DOI: 10.1016/j.heliyon.2023.e20408
    Urban forests provide direct and indirect benefits to human well-being that are increasingly captured in residential property values. Remote Sensing (RS) can be used to measure a wide range of forest and vegetation parameters that allows for a more detailed and better understanding of their specific influences on housing prices. Herein, through a systematic literature review approach, we reviewed 89 papers (from 2010 to 2022) from 21 different countries that used RS data to quantify vegetation indices, forest and tree parameters of urban forests and estimated their influence on residential property values. The main aim of this study was to understand and provide insights into how urban forests influence residential property values based on RS studies. Although more studies were conducted in developed (n = 55, 61.7%) than developing countries (n = 34, 38.3%), the results indicated for the most part that increasing tree canopy cover on property and neighborhood level, forest size, type, greenness, and proximity to urban forests increased housing prices. RS studies benefited from spatially explicit repetitive data that offer superior efficiency to quantify vegetation, forest, and tree parameters of urban forests over large areas and longer periods compared to studies that used field inventory data. Through this work, we identify and underscore that urban forest benefits outweigh management costs and have a mostly positive influence on housing prices. Thus, we encourage further discussions about prioritizing reforestation and conservation of urban forests during the urban planning of cities and suburbs, which could support UN Sustainable Development Goals (SDGs) and urban policy reforms.
  2. Blanton A, Mohan M, Galgamuwa GAP, Watt MS, Montenegro JF, Mills F, et al.
    J Environ Manage, 2024 Feb 14;352:119921.
    PMID: 38219661 DOI: 10.1016/j.jenvman.2023.119921
    Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.
  3. Blanton A, Ewane EB, McTavish F, Watt MS, Rogers K, Daneil R, et al.
    J Environ Manage, 2024 Aug;365:121529.
    PMID: 38963961 DOI: 10.1016/j.jenvman.2024.121529
    Mangroves in Southeast Asia provide numerous supporting, provisioning, regulating, and cultural services that are crucial to the environment and local livelihoods since they support biodiversity conservation and climate change resilience. However, Southeast Asia mangroves face deforestation threats from the expansion of commercial aquaculture, agriculture, and urban development, along with climate change-related natural processes. Ecotourism has gained prominence as a financial incentive tool to support mangrove conservation and restoration. Through a systematic literature review approach, we examined the relationships between ecotourism and mangrove conservation in Southeast Asia based on scientific papers published from 2010 to 2022. Most of the studies were reported in Indonesia, Malaysia, Philippines, Thailand, and Vietnam, respectively, which were associated with the highest number of vibrant mangrove ecotourism sites and largest mangrove areas compared to the other countries of Southeast Asia. Mangrove-related ecotourism activities in the above countries mainly include boat tours, bird and wildlife watching, mangrove planting, kayaking, eating seafood, and snorkeling. The economic benefits, such as an increase in income associated with mangrove ecotourism, have stimulated infrastructural development in ecotourism destinations. Local communities benefited from increased access to social amenities such as clean water, electricity, transportation networks, schools, and health services that are intended to make destinations more attractive to tourists. Economic benefits from mangrove ecotourism motivated the implementation of several community-based mangrove conservation and restoration initiatives, which attracted international financial incentives and public-private partnerships. Since mangroves are mostly located on the land occupied by indigenous people and local communities, ensuring respect for their land rights and equity in economic benefit sharing may increase their intrinsic motivation and participation in mangrove restoration and conservation initiatives. Remote sensing tools for mangrove monitoring, evaluation, and reporting, and integrated education and awareness campaigns can ensure the long-term conservation of mangroves while sustaining ecotourism's economic infrastructure and social amenities benefits.
  4. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Sep;621(7980):773-781.
    PMID: 37612513 DOI: 10.1038/s41586-023-06440-7
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
  5. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Oct;622(7982):E2.
    PMID: 37752352 DOI: 10.1038/s41586-023-06654-9
  6. Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, et al.
    Nature, 2023 Dec;624(7990):92-101.
    PMID: 37957399 DOI: 10.1038/s41586-023-06723-z
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
  7. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links