Displaying all 18 publications

Abstract:
Sort:
  1. Chen Z, Rajamanickam L, Cao J, Zhao A, Hu X
    PLoS One, 2021;16(12):e0260758.
    PMID: 34879097 DOI: 10.1371/journal.pone.0260758
    This study aims to solve the overfitting problem caused by insufficient labeled images in the automatic image annotation field. We propose a transfer learning model called CNN-2L that incorporates the label localization strategy described in this study. The model consists of an InceptionV3 network pretrained on the ImageNet dataset and a label localization algorithm. First, the pretrained InceptionV3 network extracts features from the target dataset that are used to train a specific classifier and fine-tune the entire network to obtain an optimal model. Then, the obtained model is used to derive the probabilities of the predicted labels. For this purpose, we introduce a squeeze and excitation (SE) module into the network architecture that augments the useful feature information, inhibits useless feature information, and conducts feature reweighting. Next, we perform label localization to obtain the label probabilities and determine the final label set for each image. During this process, the number of labels must be determined. The optimal K value is obtained experimentally and used to determine the number of predicted labels, thereby solving the empty label set problem that occurs when the predicted label values of images are below a fixed threshold. Experiments on the Corel5k multilabel image dataset verify that CNN-2L improves the labeling precision by 18% and 15% compared with the traditional multiple-Bernoulli relevance model (MBRM) and joint equal contribution (JEC) algorithms, respectively, and it improves the recall by 6% compared with JEC. Additionally, it improves the precision by 20% and 11% compared with the deep learning methods Weight-KNN and adaptive hypergraph learning (AHL), respectively. Although CNN-2L fails to improve the recall compared with the semantic extension model (SEM), it improves the comprehensive index of the F1 value by 1%. The experimental results reveal that the proposed transfer learning model based on a label localization strategy is effective for automatic image annotation and substantially boosts the multilabel image annotation performance.
  2. Cao J, Law SH, Samad ARBA, Mohamad WNBW, Wang J, Yang X
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48053-48069.
    PMID: 33904131 DOI: 10.1007/s11356-021-13828-3
    China's green growth has shown a trend of fluctuation year by year. Simultaneously, Chinese local governments have pursued simple economic growth driven by the interests of "political competition" for a long time, while the supervision of the ecological environment has been loosened and tightened. In this environment, financial development and technological innovation may easily become the accelerator of this phenomenon, thus exacerbating the fluctuation of green growth. To deeply excavate the key factors to achieve stable and sustained growth of green economy, based on the annual panel data of 30 provinces in China from 2011 to 2018, this paper studies the impact of financial development and technological innovation on the volatility of green growth using dynamic system GMM method. The findings of this paper are shown as follows: First, the expansion of financial institutions' scale will significantly enhance the volatility of green growth. Second, the increase in the scale of the stock market will also significantly cause green growth fluctuations. Third, the interaction between financial development and technological innovation can significantly weaken the volatility of green growth. Fourth, financial development measured by stock market indicators is more efficient than financial development measured by financial institutions indicators to curb the volatility of green growth. Fifth, the fluctuation of green growth in the previous period will reduce the volatility of green growth in the current period. This study provides new evidence for exploring the power source to promote the stability and sustainable growth of the green economy in the special stage of financial and technological integration. Controlling the development scale of financial institutions and removing their state preferences, expanding the development of capital markets, and deepening the integration of financial development and technological innovation are conducive to achieve stable green growth.
  3. Zhong C, Hamzah HZ, Yin J, Wu D, Cao J, Mao X, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(15):44490-44504.
    PMID: 36692722 DOI: 10.1007/s11356-023-25410-0
    As an important indicator of sustainable development, industrial eco-efficiency (IEE) has aroused growing attention from governments all over the world including China, in recent decades. The Chinese government has introduced numerous environmental regulations; however, the environmental pollution issue does not appear to have been solved. Moreover, although several earlier studies have shown that environmental regulations may promote innovation, there is no consensus on their ultimate effects on IEE. Therefore, this study took a critical look at the connection between environmental regulations and IEE in 36 Chinese sub-sectors from 2009 to 2018. Based on the weak Porter hypothesis (weak PH) and strong Porter hypothesis (strong PH), this paper constructed two panel regression models and conducted group analysis by pollution intensity to check the relationships among environmental regulations, technological innovation, and IEE. It was found that environmental regulations can improve technological innovation and IEE, but these impacts vary across different pollution groups. Specifically, environmental regulations have a U-shaped or inverted U-shaped relationship with technological innovation and IEE. Of the 36 sub-sectors, 26 prove the existence of the Weak PH while 10 verify the Strong PH, indicating that environmental regulations generally advocate technological innovation for most sub-sectors but only promote IEE in a few sub-sectors at present. Finally, differentiated policy implications for environmental regulations and technological innovation are provided for decision-makers.
  4. Ren Y, Wei L, Hao Yoong J, Miao Z, Li H, Cao J, et al.
    Food Chem, 2024 Feb 15;434:137450.
    PMID: 37722331 DOI: 10.1016/j.foodchem.2023.137450
    This study aimed to reveal the effect of different basic emulsion structures (W/O/W and O/W) and polysaccharide additions on protein-polysaccharide composite-based emulsion gels utilizing soybean protein isolate, palm oil and konjac glucomannan. The results of texture profile, rheological tests, microstructure observations, and oral tribology showed that basic emulsion structures and konjac glucomannan addition had significant effect on the emulsion gels' properties, while the impact of konjac glucomannan addition was stronger. W/O/W double emulsion gels (DEG) exhibited lower oral friction coefficients and obtained higher scores for oiliness and juiciness during the sensory evaluation. However, O/W single emulsion gels (SEG) displayed a firmer texture and higher chewiness, a 29.62% and 49.57% increase compared to the DEG at 7% konjac glucomannan addition on the hardness and chewiness respectively. It has demonstrated the emulsion gels' potential as cube fat mimetics and feasibility of adjusting their properties by changing the basic emulsion structure.
  5. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
  6. Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, et al.
    Ultrason Sonochem, 2024 May;105:106857.
    PMID: 38552299 DOI: 10.1016/j.ultsonch.2024.106857
    This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
  7. Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, et al.
    J Hazard Mater, 2021 03 05;405:124215.
    PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215
    High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
  8. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

  9. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
  10. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  11. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
  12. Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130300.
    PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300
    This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
  13. Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, et al.
    Phytochem Rev, 2017;16(3):379-440.
    PMID: 32214919 DOI: 10.1007/s11101-016-9488-7
    Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442-536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species.
  14. Wakatsuki M, Kato S, Ohno T, Banu PA, Hoang NC, Yadamsuren E, et al.
    Int J Radiat Oncol Biol Phys, 2019 09 01;105(1):183-189.
    PMID: 31125594 DOI: 10.1016/j.ijrobp.2019.04.039
    PURPOSE: This multi-institutional observational study conducted among 11 countries in East and Southeast Asia aimed to assess the clinical outcomes of prophylactic extended-field concurrent chemoradiation therapy using weekly cisplatin for patients with locally advanced cervical cancer.

    METHODS AND MATERIALS: Between October 2007 and May 2016, 106 patients with untreated squamous cell carcinoma of the cervix were enrolled in the present study. Radiation therapy consisted of pelvic irradiation (total dose, 50 Gy in 25 fractions including central shielding), prophylactic paraortic regional irradiation (36-40 Gy in 20 fractions), and either high- or low-dose-rate intracavitary brachytherapy (ICBT) according to institutional practice. The planned point A dose was 21 to 28 Gy in 3 to 4 fractions for high-dose-rate ICBT and 40 to 41 Gy in 1 to 2 fractions for low-dose-rate ICBT. Five cycles of weekly cisplatin (40 mg/m2) were administered during the radiation therapy course.

    RESULTS: A total of 106 patients were enrolled. Of these, 9 had major protocol violations and 2 did not receive treatment because of worsened general condition. Thus, 95 patients were evaluable. The median follow-up was 56 months. Of the 95 patients, 76 (80%) received 4 or 5 cycles of chemotherapy. Acute grade 3 leukopenia was observed in 20 of the patients (21%), and late grade 3 gastrointestinal toxicity was observed in 3%. The 2-year local control, progression-free survival, and overall survival rate for all patients were 96%, 78%, and 90%, respectively.

    CONCLUSIONS: The results indicated that prophylactic extended-field concurrent chemoradiation therapy using weekly cisplatin is feasible and effective for patients with locally advanced cervical cancer in East and Southeast Asia.

  15. Okonogi N, Wakatsuki M, Mizuno H, Fukuda S, Cao J, Kodrat H, et al.
    J Radiat Res, 2020 Jul 06;61(4):608-615.
    PMID: 32367130 DOI: 10.1093/jrr/rraa025
    3D image-guided brachytherapy (3D-IGBT) has become a standard therapy for cervical cancer. However, the use of 3D-IGBT is limited in East and Southeast Asia. This study aimed to clarify the current usage patterns of 3D-IGBT for cervical cancer in East and Southeast Asia. A questionnaire-based survey was performed in 11 countries within the framework of the Forum for Nuclear Cooperation in Asia. The questionnaire collected the treatment information of patients with cervical cancer who underwent 3D-IGBT. The cumulative external beam radiotherapy and 3D-IGBT doses were summarized and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2) using a linear-quadratic model. Of the 11 institutions representing the participating countries, six (55%) responded to the questionnaire. Overall, data of 36 patients were collected from the six institutions. Twenty-one patients underwent whole-pelvic irradiation and 15 underwent whole-pelvic irradiation with central shielding. Patients received a median of four treatment sessions of 3D-IGBT (range, 2-6). All 3D-IGBT sessions were computed tomography (CT)-based and not magnetic resonance image-based. The median doses to the high-risk clinical target volume D90, bladder D2cc, rectum D2cc and sigmoid colon D2cc were 80.9 Gy EQD2 (range, 58.9-105.9), 77.7 Gy EQD2 (range, 56.9-99.1), 68.0 Gy EQD2 (range, 48.6-90.7) and 62.0 Gy EQD2 (range, 39.6-83.7), respectively. This study elucidated the current patterns of 3D-IGBT for the treatment of cervical cancer in East and Southeast Asia. The results indicate the feasibility of observational studies of CT-based 3D-IGBT for cervical cancer in these countries.
  16. Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, Yip HY, et al.
    Commun Biol, 2021 01 19;4(1):83.
    PMID: 33469163 DOI: 10.1038/s42003-020-01637-2
    Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
  17. Song P, Adeloye D, Acharya Y, Bojude DA, Ali S, Alibudbud R, et al.
    J Glob Health, 2024 Feb 16;14:04054.
    PMID: 38386716 DOI: 10.7189/jogh.14.04054
    BACKGROUND: In this priority-setting exercise, we sought to identify leading research priorities needed for strengthening future pandemic preparedness and response across countries.

    METHODS: The International Society of Global Health (ISoGH) used the Child Health and Nutrition Research Initiative (CHNRI) method to identify research priorities for future pandemic preparedness. Eighty experts in global health, translational and clinical research identified 163 research ideas, of which 42 experts then scored based on five pre-defined criteria. We calculated intermediate criterion-specific scores and overall research priority scores from the mean of individual scores for each research idea. We used a bootstrap (n = 1000) to compute the 95% confidence intervals.

    RESULTS: Key priorities included strengthening health systems, rapid vaccine and treatment production, improving international cooperation, and enhancing surveillance efficiency. Other priorities included learning from the coronavirus disease 2019 (COVID-19) pandemic, managing supply chains, identifying planning gaps, and promoting equitable interventions. We compared this CHNRI-based outcome with the 14 research priorities generated and ranked by ChatGPT, encountering both striking similarities and clear differences.

    CONCLUSIONS: Priority setting processes based on human crowdsourcing - such as the CHNRI method - and the output provided by ChatGPT are both valuable, as they complement and strengthen each other. The priorities identified by ChatGPT were more grounded in theory, while those identified by CHNRI were guided by recent practical experiences. Addressing these priorities, along with improvements in health planning, equitable community-based interventions, and the capacity of primary health care, is vital for better pandemic preparedness and response in many settings.

  18. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links