Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Chin SF, Cheong SK
    Malays J Pathol, 1994 Jun;16(1):69-73.
    PMID: 16329579
    Several fixation and permeabilization techniques that enable the flow cytometric analysis of the cell contents have been introduced in recent years. These methods allow sensitive detection of intracellular antigens that facilitates the diagnosis of certain diseases. We have undertaken in this study to evaluate a simple method of fixation and permeabilization using 2% paraformaldehyde and Tween 20. Intracellular antigens in three different leukaemia cases were analysed. We found that the method was reliable and easy. Intracellular kappa light chains were found in abundance in a case of plasma cell leukaemia. CD3 and CD22 were found in greater amount intracellularly than on the surface in pre-T-ALL and pre-pre B-ALL respectively.
  2. Pang SC, Chin SF, Anderson MA
    J Colloid Interface Sci, 2007 Jul 1;311(1):94-101.
    PMID: 17395194
    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.
  3. Voon LK, Pang SC, Chin SF
    Carbohydr Polym, 2016 May 20;142:31-7.
    PMID: 26917370 DOI: 10.1016/j.carbpol.2016.01.027
    Cellulose extracted from printed paper wastes were selectively depolymerized under controlled conditions into cello-oligomers of controllable chain lengths via dissolution in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AMIMCl), and in the presence of an acid catalyst, Amberlyst 15DRY. The depolymerization process was optimized against reaction temperature, concentration of acid catalyst, and reaction time. Despite rapid initial depolymerization process, the rate of cellulose depolymerization slowed down gradually upon prolonged reaction time, with 75.0 wt% yield of regenerated cello-oligomers (mean Viscosimetric Degree of Polymerization value of 81) obtained after 40 min. The depolymerization of cellulose fibers at 80 °C appeared to proceed via a second-order kinetic reaction with respect to the catalyst concentration of 0.23 mmol H3O(+). As such, the cellulose depolymerization process could afford some degree of control on the degree of polymerization or chain lengths of cello-oligomers formed.
  4. Cheong SK, Chin SF, Kong NC
    Malays J Pathol, 1997 Dec;19(2):121-5.
    PMID: 10879252
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by increased B cell activity and depressed T cell function. However, the contribution of the immunoregulatory system to its pathogenesis is still unclear. The recent development in the production of monoclonal antibodies and the availability of bench-top flow cytometers have allowed rapid quantitation of peripheral blood lymphocyte subsets. We analysed the distribution of the lymphocyte subsets in 24 patients with active SLE and 18 with inactive SLE. The distribution of immunoregulatory cells in 72 normal volunteers was used as control. Statistical analysis showed that there were significant differences between both the SLE groups and the normal controls, for total lymphocytes, T cells, B cells, T helper cells, T suppressor cells, T helper/suppressor ratio and natural killer cells. There was a significant difference for T helper cells between active and inactive SLE. T helper cells levels were found to be low in inactive SLE and lower in active SLE. It appears that treatment-induced remissions did not restore the levels of immunoregulatory cells to normal. Thus, T helper cell levels reflect disease activity and longitudinal assays of T helper cells may serve as an indicator of disease reactivation.
  5. Pang SC, Voon LK, Chin SF
    Appl Biochem Biotechnol, 2018 Apr;184(4):1142-1154.
    PMID: 28965305 DOI: 10.1007/s12010-017-2616-z
    The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.
  6. Chin SF, Osman J, Jamal R
    Clin Chim Acta, 2018 Oct;485:60-66.
    PMID: 29935177 DOI: 10.1016/j.cca.2018.06.024
    A simple and economical method has been developed for simultaneous determination of human serum 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3) using Ultra Performance Liquid Chromatography (UPLC). Non-human matrix of 4% BSA was used to construct the calibration curve and in quality control samples' preparation to avoid interference of the endogenous 25-hydroxyvitamin D (25OHD) present in the human serum. 25OHD2, 25OHD3 and dodecanophenone (internal standard, IS) were separated on a CORTECS solid-core particle column and monitored by photodiode array detector at wavelength of 265 nm within five min run time. The relationship between 25OHD concentration and peak area ratio (25OHD:IS) was linear over the range of 12.5 - 200 nM with mean correlation coefficients (r2) >0.998. The limit of detection (LOD) for 25OHD2 and 25OHD3 was 3.00 nM and 3.79 nM, while the lower limit of quantification (LLOQ) was 9.11 nM and 11.48 nM, respectively. High repeatability was obtained for both isomers with intra-day CV% <5.6% and <5.3% for inter-day assay. This method was further tested with a commercial lyophilized serum control with an accuracy of 92.87-108.31% and applied on 214 human serum samples. In summary, this validated method with BSA can be reliably applied for routine quantification of 25OHD in adults.
  7. Mohammed Nawi A, Chin SF, Jamal R
    Pract Lab Med, 2020 Jan;18:e00142.
    PMID: 31720354 DOI: 10.1016/j.plabm.2019.e00142
    INTRODUCTION: In recent years, trace elements have gained importance as biomarkers in many chronic diseases. Unfortunately, the requirement for sample volume increases with the extent of investigation either for diagnosis or elucidating the mechanism of the disease. Here, we describe the method development and validation for simultaneous determination of 25 trace elements (lithium [Li], beryllium [Be], magnesium [Mg], aluminium [Al], vanadium [V], chromium [Cr], manganese [Mn], iron [Fe], cobalt [Co], nickel [Ni], copper [Cu], zinc [Zn], gallium [Ga], arsenic [As], selenium [Se], rubidium [Rb], strontium [Sr], silver [Ag], cadmium [Cd], caesium [Cs], barium [Ba], mercury [Hg], thallium [Tl], lead [Pb], uranium [U]) using only 20 μL of human serum.

    METHODS: Serum samples were digested with nitric acid and hydrochloric acid (ratio 1:1, v/v) and analysed by inductively coupled plasma-mass spectrometry (ICP-MS). Seronorm®, a human-derived serum control material was used as quality control samples.

    RESULTS: The coefficient of variations for both intra- and inter-day precisions were consistently <15% for all elements. The validated method was later tested on 30 human serum samples to evaluate its applicability.

    CONCLUSION: We have successfully developed and validated a precise and accurate analytical method for determining 25 trace elements requiring very low volume of human serum.

  8. Fong JFY, Chin SF, Ng SM
    Biosens Bioelectron, 2016 Nov 15;85:844-852.
    PMID: 27290666 DOI: 10.1016/j.bios.2016.05.087
    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.
  9. Chin SF, Cheong SK, Lim YC, Ton SH
    Malays J Pathol, 1993 Jun;15(1):49-52.
    PMID: 8277790
    The distribution of immunoregulatory cells in the peripheral blood of an individual has now been established as an important tool in helping the management of several diseases. It is necessary to set the normal ranges of these cells for the laboratory. We have undertaken in this study to establish the reference ranges for normal Malaysian adults. We found that the mean percentages of T cells, B cells, T Helper cells (CD4), T suppressor cells (CD8), NK cells and the ratio of CD4/CD8 were 70.91%, 11.38%, 38.15%, 37.76%, 17.45%, and 1.00 respectively. There was no significant difference between the sexes. In certain parameters, there was significant differences between Malay, Chinese and Indians. The Chinese and Indians were significantly different in the distribution of B cells and in the CD4/CD8 ratio. In the case of CD4 and NK cells, the Indians were different from the other two groups.
  10. Lim SM, Mohamad Hanif EA, Chin SF
    Cell Biosci, 2021 Mar 20;11(1):56.
    PMID: 33743781 DOI: 10.1186/s13578-021-00570-z
    Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
  11. Nawi AM, Chin SF, Mazlan L, Jamal R
    Sci Rep, 2020 10 29;10(1):18670.
    PMID: 33122698 DOI: 10.1038/s41598-020-75760-9
    The burden of colorectal cancer (CRC) is increasing worldwide especially in developing countries. This phenomenon may be attributable to lifestyle, dietary and environmental risk factors. We aimed to determine the level of 25 trace elements, their interaction with environmental risk factors, and subsequently develop a risk prediction model for CRC (RPM CRC). For the discovery phase, we used a hospital-based case-control study (CRC and non-CRC patients) and in the validation phase we analysed pre-symptomatic samples of CRC patients from The Malaysian Cohort Biobank. Information on the environmental risk factors were obtained and level of 25 trace elements measured using the ICP-MS method. CRC patients had lower Zn and Se levels but higher Li, Be, Al, Co, Cu, As, Cd, Rb, Ba, Hg, Tl, and Pb levels compared to non-CRC patients. The positive interaction between red meat intake ≥ 50 g/day and Co ≥ 4.77 µg/L (AP 0.97; 95% CI 0.91, 1.03) doubled the risk of CRC. A panel of 24 trace elements can predict simultaneously and accurate of high, moderate, and low risk of CRC (accuracy 100%, AUC 1.00). This study provides a new input on possible roles for various trace elements in CRC as well as using a panel of trace elements as a screening approach to CRC.
  12. Cheong SK, Chin SF, Azizon O, Ainoon O, Hamidah NH
    Hematology, 1996;1(3):223-5.
    PMID: 27406616 DOI: 10.1080/10245332.1996.11746308
    A previously healthy eleven month old male Malay infant presented with fever, upper respiratory tract infection and right knee swelling. Pallor, bilateral proptosis, hepatosplenomegaly, multiple scalp swellings and a right cheek swelling were observed. Investigations revealed that he had acute monoblastic leukemia or FAB M5a. Immunophenotyping by flow cytometry showed that the blast cells were positive for CD45, CD13, CD33, HLA-DR, CDllc, CD71, EMA, and Cytokeratin. They were negative for CD34, CD19, CD10, CD22, CD2, CD3, CD4, CD7, CD8, CD61, NK, Glycophorin A, and CD14. The monoblasts were used to evaluate anti-EMA and anti-cytokeratin. They were unexpectedly found to be positive. Acute monoblastic leukaemias are well known to show extramedullary infiltration and this may be their primary mode of presentation. Thus, in immunochemostry, when using EMA and cytokeratin expression in the differential diagnosis of neoplastic diseases, it is important to consider that monoblasts may express these markers as illustrated by this case.
  13. Lee PY, Chin SF, Neoh HM, Jamal R
    J Biomed Sci, 2017 Jun 12;24(1):36.
    PMID: 28606141 DOI: 10.1186/s12929-017-0342-z
    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.
  14. Lee PY, Chin SF, Low TY, Jamal R
    J Proteomics, 2018 09 15;187:93-105.
    PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014
    Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
  15. Nawi AM, Chin SF, Azhar Shah S, Jamal R
    Iran J Public Health, 2019 Apr;48(4):632-643.
    PMID: 31110973
    Background: Trace elements play a pivotal role in Colorectal Cancer (CRC) inhibition and development process. This systematic review provides the basic comparison of case-control studies focusing on concentration of trace elements between those with CRC and controls.

    Methods: The systematic review searched through two databases of Medline and Cochrane up to 24th June 2017. The search strategy focused on Population, Intervention, Comparison, and Outcomes (PICO). We searched the role of trace elements in cancer and focusing on case-control studies in CRC to obtain an insight into the differences in trace element concentrations between those with and without cancer.

    Results: The serum concentrations of Ca, Cu, Mg, Mn, Se, Si, and Zn were lower in CRC patients but for Co and S the levels were higher in CRC patients. The concentrations of Cd, Cr, Cu, Mg, Mn, Pb, and Zn were increased in patients with metastasis, but not in Se. As for colon tissue specimens, inconsistent levels were reported between studies, notably in Cu, Se, and Zn. No changes were reported for B and Ca levels. Most of the trace elements in the tissue specimens showed higher concentrations of Cr, Fe, K, Mg, P, Rb, S, and Si compared to Br.

    Conclusion: With the growing interest to understand the link between trace elements in carcinogenesis and the possible interactions, multi assessment analysis of a larger cohort of samples is necessary.

  16. Ng SM, Wong DS, Phung JH, Chin SF, Chua HS
    Talanta, 2013 Nov 15;116:514-9.
    PMID: 24148438 DOI: 10.1016/j.talanta.2013.07.031
    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.
  17. Chin SF, Cheong SK, Lim YC, Mok KL, Hamidah HN
    Malays J Pathol, 1993 Dec;15(2):125-30.
    PMID: 8065173
    The applications of antibodies, be it monoclonal or polyclonal, in the diagnostic and research fields are well established. The disadvantage is the high cost of commercially available antibodies. In a diagnostic establishment like ours which also functions as a training ground for laboratory related personnel, it is beneficial to be able to produce in-house reagents. Therefore, we have undertaken this project to produce a rabbit polyclonal antibody against B lymphocytes. We found that the rabbit was a good choice because the titre of antibody produced was high and positive reactions were still detected at a dilution of 1:38400. The antibody showed significant positive reaction only with the lymphocyte subpopulation. A positive reaction was observed between the immunized rabbit serum and B lymphocytes but not T lymphocytes. This shows that the antibody was B lymphocyte specific. There was a positive correlation between the percentage of B lymphocytes labelled using the commercial anti-CD19 monoclonal antibody and the in-house polyclonal antibody (n = 13, r = 0.7, p = 0.02). However, the percentage of cells labelled by the in-house polyclonal anti-B was lower than that by the commercial monoclonal anti-CD19. The fluorescence intensity of the polyclonal antibody was lower than that of the monoclonal. In general, the performance of the in-house polyclonal antibody can be considered as satisfactory. The rabbit serum was stored at -20 degrees C and no significant loss of activity was detected for over a period of 19 months.
  18. Megat Mohd Azlan PI, Chin SF, Low TY, Neoh HM, Jamal R
    Proteomics, 2019 05;19(10):e1800176.
    PMID: 30557447 DOI: 10.1002/pmic.201800176
    Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links