Displaying all 6 publications

Abstract:
Sort:
  1. M Chinnappan S, George A, Ashok G, Choudhary YK
    BMC Complement Med Ther, 2020 Feb 05;20(1):31.
    PMID: 32024514 DOI: 10.1186/s12906-020-2814-z
    BACKGROUND: Each year 1.5 million women experience menopause when menstrual cycles cease resulting from the loss of ovarian function and oestrogen deprivation, a hormone that helps prevent bone loss. This study investigated the effects of Physta®, a standardized herbal extract of Eurycoma longifolia Jack (PEL), on hormonal balance and parameters associated with hormonal imbalance, namely body and uterus weight and bone biochemical markers relevant in menopausal symptoms.

    METHODS: Forty-eight Sprague Dawley rats were randomly divided into six groups of eight rats each: (A) Sham operated; control (B) Untreated (ovariectomised (OVX) with vehicle), (C) PEL 100 (OVX + 100 mg/kg body weight (bw)), (D) PEL 300 (OVX + 300 mg/kg bw), (E) PEL 500 (OVX + 500 mg/kg bw) and (F) Positive control, testosterone undecanoate (TU) (OVX+ 10 mg/kg bw). Group A and B received daily oral administrations of the vehicle, Group C-E received daily oral administration of PEL and Group F received testosterone undecanoate intramuscularly weekly. At the end of 8 weeks, serum calcium, phosphate, bone alkaline phosphatase (BALP), osteocalcin, follicle stimulating hormone (FSH), luteinising hormone (LH), oestrogen, progesterone and testosterone were measured, then the animals were sacrificed and uterus was isolated, while weight was recorded in all experimental groups.

    RESULTS: Treatment of OVX rats with PEL at a dose of 500 mg/kg showed decreased serum FSH (P 

  2. Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A
    PMID: 34447454 DOI: 10.1155/2021/3663315
    Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
  3. George A, Chinnappan S, Chintamaneni M, Kotak C V, Choudhary Y, Kueper T, et al.
    PMID: 25252832 DOI: 10.1186/1472-6882-14-355
    The study was aimed to evaluate the anti-inflammatory activity of ethanolic and aqueous extracts of Polygonum minus (Huds) using in vitro and in vivo approaches.
  4. George A, Chinnappan S, Choudhary Y, Choudhary VK, Bommu P, Wong HJ
    PMID: 26649059 DOI: 10.1155/2015/375837
    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory.
  5. Ravindran B, Karmegam N, Awasthi MK, Chang SW, Selvi PK, Balachandar R, et al.
    Bioresour Technol, 2022 Feb;346:126442.
    PMID: 34848334 DOI: 10.1016/j.biortech.2021.126442
    The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
  6. Nelson VK, Pullaiah CP, Saleem Ts M, Roychoudhury S, Chinnappan S, Vishnusai B, et al.
    Adv Exp Med Biol, 2022;1391:161-179.
    PMID: 36472822 DOI: 10.1007/978-3-031-12966-7_10
    Prostate cancer is the most commonly diagnosed and frequently occurred cancer in the males globally. The current treatment strategies available to treat prostate cancer are not much effective and express various adverse effects. Hence, there is an urgent need to identify novel treatment that can improve patient outcome. From times immemorial, natural products are highly recognized for novel drug development for various diseases including cancer. Cancer cells generally maintain higher basal levels of reactive oxygen species (ROS) when compared to normal cells due to its high metabolic rate. However, initiation of excess intracellular ROS production can not be tolerated by the cancer cells and induce several cell death signals which are in contrast to normal cells. Therefore, small molecules of natural origin that induce ROS can potentially kill cancer cells in specific and provide a better opportunity to develop a novel drug therapy. In this review, we elaborated various classes of medicinal compounds and their mechanism of killing prostate cancer cells through direct or indirect ROS generation. This can generate a novel thought to develop promising drug candidate to treat prostate cancer patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links