RECENT FINDINGS: Genetic testing for familial hypercholesterolaemia is valuable to enhance diagnostic precision, cascade testing, risk prediction and the use of new medications. Hypertriglyceridaemia may be caused by rare recessive monogenic, or by polygenic, gene variants; genetic testing may be useful in the former, for which antisense therapy targeting apoC-III has been approved. Familial high-density lipoprotein deficiency is caused by specific genetic mutations, but there is no effective therapy. Familial combined hyperlipidaemia (FCHL) is caused by polygenic variants for which there is no specific gene testing panel. Familial dysbetalipoproteinaemia is less frequent and commonly caused by APOE ε2ε2 homozygosity; as with FCHL, it is responsive to lifestyle modifications and statins or/and fibrates. Elevated lipoprotein(a) is a quantitative genetic trait whose value in risk prediction over-rides genetic testing; treatment relies on RNA therapeutics.
SUMMARY: Genetic testing is not at present commonly available for managing dyslipidaemias. Rapidly advancing technology may presage wider use, but its worth will require demonstration of cost-effectiveness and a healthcare workforce trained in genomic medicine.
MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.
RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.
CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.
CASE PRESENTATION: This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation.
CONCLUSION: A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.
METHODS: Community participants (n=5130) were recruited from all states in Malaysia. Blood samples were collected for lipid profiles and glucose analyses. Personal and family medical histories were collected by means of assisted questionnaire. Physical examination for tendon xanthomata and premature corneal arcus were conducted on-site. FH were clinically screened using Dutch Lipid Clinic Network Criteria.
RESULTS: Out of 5130 recruited community participants, 55 patients were clinically categorised as potential (Definite and Probable) FH, making the prevalence FH among the community as 1:100. Based on current total population of Malaysia (32 million), the estimated number of FH patients in Malaysia is 320,000, while the detection rates are estimated as 0.5%. Lipid-lowering medications were prescribed to 54.5% and 30.5% of potential and possible FH patients, respectively, but none of them achieved the therapeutic LDL-c target.
CONCLUSION: Clinically diagnosed FH prevalence in Malaysian population is much higher than most of the populations in the world. At community level, FH patients are clinically under-detected, with majority of them not achieving target LDL-c level for high-risk patients. Therefore, public health measures are warranted for early detection and treatment, to enhance opportunities for premature CAD prevention.
METHODS: Subjects were recruited from lipid and cardiac specialist hospitals. FH was clinically diagnosed using the Dutch Lipid Clinic Network Criteria. Patients' medical history was recorded using a standardized questionnaire. LLM prescription history and baseline LDL-C were acquired from the hospitals' database. Blood samples were acquired for the latest lipid profile assay.
RESULTS: A total of 206 patients with FH were recruited. Almost all of them were on LLMs (97.6%). Only 2.9% and 7.8% of the patients achieved the target LDL-C of <1.4 and <1.8 mmol/L, respectively. The majority of patients who achieved the target LDL-C were prescribed with statin-ezetimibe combination medications and high-intensity or moderate-intensity statins. All patients who were prescribed with ezetimibe monotherapy did not achieve the target LDL-C.
CONCLUSION: The majority of Malaysian patients with FH received LLMs, but only a small fraction achieved the therapeutic target LDL-C level. Further investigation has to be conducted to identify the cause of the suboptimal treatment target attainment, be it the factors of patients or the prescription practice.
OBJECTIVE: This study aims to (1) compare the detection rate of genetically confirmed FH and diagnostic accuracy between the FAMCAT, SB, and DLCC in the Malaysian primary care setting; (2) identify the genetic mutation profiles, including novel variants, in individuals with suspected FH in primary care; (3) explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing in primary care; and (4) evaluate the clinical utility of a web-based FH Identification Tool that includes the FAMCAT, SB, and DLCC in the Malaysian primary care setting.
METHODS: This is a mixed methods evaluation study conducted in 11 Ministry of Health primary care clinics located at the central administrative region of Malaysia. In Work stream 1, the diagnostic accuracy study design is used to compare the detection rate and diagnostic accuracy of the FAMCAT, SB, and DLCC against molecular diagnosis as the gold standard. In Work stream 2, the targeted next-generation sequencing of the 4 FHCGs is used to identify the genetic mutation profiles among individuals with suspected FH. In Work stream 3a, a qualitative semistructured interview methodology is used to explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing. Lastly, in Work stream 3b, a qualitative real-time observation of primary care physicians using the "think-aloud" methodology is applied to evaluate the clinical utility of a web-based FH Identification Tool.
RESULTS: The recruitment for Work stream 1, and blood sampling and genetic analysis for Work stream 2 were completed in February 2023. Data collection for Work stream 3 was completed in March 2023. Data analysis for Work streams 1, 2, 3a, and 3b is projected to be completed by June 2023, with the results of this study anticipated to be published by December 2023.
CONCLUSIONS: This study will provide evidence on which clinical diagnostic criterion is the best to detect FH in the Malaysian primary care setting. The full spectrum of genetic mutations in the FHCGs including novel pathogenic variants will be identified. Patients' perspectives while undergoing genetic testing and the primary care physicians experience in utilizing the web-based tool will be established. These findings will have tremendous impact on the management of patients with FH in primary care and subsequently reduce their risk of premature coronary artery disease.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/47911.