Displaying all 15 publications

Abstract:
Sort:
  1. Deng X, Shi W, Sunarso J, Liu M, Shao Z
    ACS Appl Mater Interfaces, 2017 May 17;9(19):16280-16287.
    PMID: 28453932 DOI: 10.1021/acsami.7b03933
    Sodium ion batteries (SIBs) are considered one of the most promising alternatives for large-scale energy storage due largely to the abundance and low cost of sodium. However, the lack of high-performance cathode materials at low cost represents a major obstacle toward broad commercialization of SIB technology. In this work, we report a green route strategy that allows cost-effective fabrication of carbon-coated Na2FePO4F cathode for SIBs. By using vitamin C as a green organic carbon source and environmentally friendly water-based polyacrylic latex as the binder, we have demonstrated that the Na2FePO4F phase in the as-derived Na2FePO4F/C electrode shows a high reversible capacity of 117 mAh g-1 at a cycling rate of 0.1 C. More attractively, excellent rate capability is achieved while retaining outstanding cycling stability (∼85% capacity retention after 1000 charge-discharge cycles at a rate of 4 C). Further, in operando X-ray diffraction has been used to probe the evolution of phase structures during the charge-discharge process, confirming the structural robustness of the Na2FePO4F/C cathode (even when charged to 4.5 V). Accordingly, the poor initial Coulombic efficiency of some anode materials may be compensated by extracting more sodium ions from Na2FePO4F/C cathode at higher potentials (up to 4.5 V).
  2. Subramani B, Pullai CR, Krishnan K, Sugadan SD, Deng X, Hiroshi T, et al.
    Biomed Rep, 2014 Jul;2(4):505-508.
    PMID: 24944796
    Immune cell-based therapies using natural killer (NK) cells and cytotoxic T cells are under constant scrutiny, with the aim to design an effective and reduced-toxicity therapy, which will benefit patients via improved quality of life and improved prognosis. Four patients with stage IV colon cancer were administered 1, 3, 5 and 6 effector cell intravenous infusions, respectively. Peripheral blood was collected from the patients and the ex vivo activation and expansion of NK and T cells was performed in Good Manufacturing Practice-certified clean rooms for ~12-15 days. Immunophenotypic analysis of the peripheral blood mononuclear cells (PBMCs) and expanded NK and T cells was conducted using flow cytometry and the patients were followed up. On average, 4.8×107 initial PBMCs and 2.7×109 total expanded cells were obtained. The intravenous infusions of the expanded cells were not accompanied by adverse reactions. Improved prognosis, reflected by a considerable decrease in the cancer markers, accompanied by an improved quality of life in the patients were observed. In conclusion, potential strategies are currently under development for the large-scale production of effectors cells; therefore, autologous immune enhancement therapy (AIET) may be considered as a viable approach to cancer treatment.
  3. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Cell Mol Life Sci, 2021 Jan;78(2):497-512.
    PMID: 32748155 DOI: 10.1007/s00018-020-03579-8
    YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
  4. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Front Cell Dev Biol, 2020;8:735.
    PMID: 32850847 DOI: 10.3389/fcell.2020.00735
    The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
  5. Round WH, Ng KH, Rodriguez L, Thayalan K, Tang F, Srivastava R, et al.
    Australas Phys Eng Sci Med, 2018 Dec;41(4):809-810.
    PMID: 30406922 DOI: 10.1007/s13246-018-0708-x
    This policy statement, which is the sixth of a series of documents prepared by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP) Professional Development Committee, gives guidance on how medical physicists in AFOMP countries should conduct themselves in an ethical manner in their professional practice (Ng et al. in Australas Phys Eng Sci Med 32:175-179, 2009; Round et al. in Australas Phys Eng Sci Med 33:7-10, 2010; Round et al. in Australas Phys Eng Sci Med 34:303-307, 2011; Round et al. in Australas Phys Eng Sci Med 35:393-398, 2012; Round et al. in Australas Phys Eng Sci Med 38:217-221, 2015). It was developed after the ethics policies and codes of conducts of several medical physics societies and other professional organisations were studied. The policy was adopted at the Annual General Meeting of AFOMP held in Jaipur, India, in November 2017.
  6. Xiao B, Deng X, Ng EY, Allen JC, Lim SY, Ahmad-Annuar A, et al.
    JAMA Neurol, 2018 01 01;75(1):127-128.
    PMID: 29131875 DOI: 10.1001/jamaneurol.2017.3363
  7. Chen X, Feng X, Zhang Z, Deng X, Dai F, Zhang L, et al.
    Inorg Chem, 2023 Oct 02;62(39):16170-16181.
    PMID: 37722103 DOI: 10.1021/acs.inorgchem.3c02448
    In response to the growing concern for environmental pollution, two lanthanide compounds {[Ln(L)(H2O)]·4H2O}n (where Ln = Tb and Gd, H3L = 1-amino-2,4,6-benzene tricarboxylic acid) were synthesized using a -NH2 modified ligand and systematically characterized. Both compounds exhibit remarkable fluorescence response, adsorption of CrO42- ions, and photocatalytic degradation properties, as well as exceptional acid-base and thermal stability. Remarkably, the pH-dependent 1-Tb exhibits exceptional performance as a fluorescent probe for detecting Fe3+ and CrO42-/Cr2O72- ions in aqueous solutions, while also serving as a ratiometric fluorescent probe for the detection of Cr3+, offering rapid response, high sensitivity, selectivity, and recoverability advantages in application. Moreover, 1-Tb exhibits excellent detection capabilities and displays effective adsorption of CrO42- ions, with a maximum adsorption capacity of 230.71 mg/g. On the other hand, 1-Gd exhibits superior performance compared to 1-Tb in the photocatalytic degradation of antibiotics. The degradation mechanism is further elucidated by conducting experiments with DFT theoretical calculations.
  8. Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, et al.
    Animal Model Exp Med, 2023 Apr;6(2):120-130.
    PMID: 36856186 DOI: 10.1002/ame2.12300
    Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
  9. Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, et al.
    Adv Sci (Weinh), 2023 Jan;10(2):e2204502.
    PMID: 36453574 DOI: 10.1002/advs.202204502
    Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
  10. Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, et al.
    Virology, 2015 Aug;482:98-104.
    PMID: 25839169 DOI: 10.1016/j.virol.2015.03.011
    Viruses with small circular ssDNA genomes encoding a replication initiator protein can infect a wide range of eukaryotic organisms ranging from mammals to fungi. The genomes of two such viruses, a cyclovirus (CyCV-SL) and gemycircularvirus (GemyCV-SL) were detected by deep sequencing of the cerebrospinal fluids of Sri Lankan patients with unexplained encephalitis. One and three out of 201 CSF samples (1.5%) from unexplained encephalitis patients tested by PCR were CyCV-SL and GemyCV-SL DNA positive respectively. Nucleotide similarity searches of pre-existing metagenomics datasets revealed closely related genomes in feces from unexplained cases of diarrhea from Nicaragua and Brazil and in untreated sewage from Nepal. Whether the tropism of the cyclovirus and gemycircularvirus reported here include humans or other cellular sources in or on the human body remains to be determined.
  11. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

  12. Xie M, Zhong Y, Xue Q, Wu M, Deng X, O Santos H, et al.
    Exp Gerontol, 2020 07 15;136:110949.
    PMID: 32304719 DOI: 10.1016/j.exger.2020.110949
    BACKGROUND AND AIM: Inconsistencies exist with regard to the influence of dehydroepiandrosterone (DHEA) supplementation on insulin-like growth factor 1 (IGF-1) levels. The inconsistencies could be attributed to several factors, such as dosage, gender, and duration of intervention, among others. To address these inconsistencies, we conducted a systematic review and meta-analysis to combine findings from randomized controlled trials (RCTs) on this topic.

    METHODS: Electronic databases (Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar) were searched for relevant literature published up to February 2020.

    RESULTS: Twenty-four qualified trials were included in this meta-analysis. It was found that serum IGF-1 levels were significantly increased in the DHEA group compared to the control (weighted mean differences (WMD): 16.36 ng/ml, 95% CI: 8.99, 23.74; p = .000). Subgroup analysis revealed that a statistically significant increase in serum IGF-1 levels was found only in women (WMD: 23.30 ng/ml, 95% CI: 13.75, 32.87); in participants who supplemented 50 mg/d DHEA (WMD: 15.75 ng/ml, 95% CI: 7.61, 23.89); in participants undergoing DHEA intervention for >12 weeks (WMD: 17.2 ng/ml, 95% CI: 8.02, 26.22); in participants without an underlying comorbidity (WMD: 19.11 ng/ml, 95% CI: 10.69, 27.53); and in participants over the age of 60 years (WMD: 19.79 ng/ml, 95% CI: 9.86, 29.72).

    CONCLUSION: DHEA supplementation may increase serum IGF-I levels especially in women and older subjects. However, further studies are warranted before DHEA can be recommended for clinical use.

  13. Wu F, Jiang H, Beattie GAC, Holford P, Chen J, Wallis CM, et al.
    Pest Manag Sci, 2018 Nov;74(11):2569-2577.
    PMID: 29688605 DOI: 10.1002/ps.5044
    BACKGROUND: Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated.

    RESULTS: The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation.

    CONCLUSION: Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry.

  14. Kek HY, Tan H, Othman MHD, Nyakuma BB, Goh PS, Wong SL, et al.
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121253-121268.
    PMID: 37979109 DOI: 10.1007/s11356-023-30912-y
    Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.
  15. Fu YP, Kohaar I, Moore LE, Lenz P, Figueroa JD, Tang W, et al.
    Cancer Res, 2014 Oct 15;74(20):5808-18.
    PMID: 25320178 DOI: 10.1158/0008-5472.CAN-14-1531
    A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links