1. Using ordinary clinical thermometers resting oral temperatures were taken in 4,463 schoolgirls between the ages of 6 and 20 years. 2. From 2,500 readings in clinically healthy and apyrexial girls charts were made to show temperature variations. 3. It was demonstrated that in the age group 6-10 the mean temperature was 99.5 F. That in the age group 10-14 the mean temperature was 99.3 F and in the age group 14-20 the mean temperature was 99.1 F. 4. For all age groups the majority fell within the limit of 98.9 – 100 F. 5. It is not uncommon to encounter a temperature of over 100º and up to 100.8º of no pathological significance. 6. Temperature readings are not a reliable guide in the clinical assessment of children unless the above considerations are borne in mind.
One hundred and thirty eight penicillinase producing Neisseria gonorrhoeae (PPNG) and 239 non-PPNG strains were characterised serologically using a panel of seven monoclonal antibodies directed against protein 1A and seven against protein 1B. An association between serovar and susceptibility to antimicrobial agents, auxotype, and plasmid content was observed. Serogroup WI strains were more sensitive to penicillin, ampicillin, tetracycline, erythromycin, cefoxitin, and cefuroxime. Sixty five (82%) of the 79 WI strains were typed as being serovar Aedgkih, and 47 (72%) of these strains required arginine, uracil, and hypoxanthine for growth (AUH-). Seventy one (44%) of 160 WII/WIII strains were serovar Bacejk, and 42 (59%) of these required proline, citrulline, and uracil for growth (PCU-) and were plasmid free. Serovars Bcgk, Beghjk, Bacjk, and Bajk were associated with resistance to antimicrobial agents. Analysis of PPNG isolates showed a new serovar, Af, which was associated with strains imported from Malaysia and Singapore that required proline and ornithine for growth (Pro-Orn-) and carried the 24.5 megadalton transfer plasmid, the 2.6 megadalton cryptic plasmid, and the 4.5 megadalton penicillinase producing plasmid. Other associations between serovar and geographical location were noted.
The summary of various studies done looking at size selection of the laryngeal mask airway (LMA) in adults is that, selection based on sex is appropriate, and that both sizes 4 or 5 are adequate for adult females. However, in our local population these sizes may be too large especially the size 5 for adult females.
Four homologous single chain phospholipases A2 (Pa-1G, Pa-5, Pa-12C and Pa-15) were tested for neuromuscular effects on chick biventer cervicis and mouse hemidiaphragm nerve-muscle preparations. The four isozymes blocked directly elicited (mouse hemidiaphragm) and indirectly elicited (mouse and chick nerve-muscle preparations) twitch responses in concentrations of 1-30 micrograms/ml. The order of potency seen in both types of preparations was Pa-1G = Pa-5 greater than Pa-12C much greater than Pa-15. All four isozymes caused slow-onset, sustained contractures and reduction of muscle membrane potentials. In the chick preparation, responses to acetylcholine, carbachol and KCl were reduced by exposure to the toxins. It is concluded that the toxins act primarily postsynaptically to depress muscle contractility, perhaps by directly damaging muscle fibres. The order of potency agrees with their phospholipase A2 activity. Pa-1G is unusual because it is an acidic molecule, most toxic phospholipases being basic.
In this paper, we generalize the theory of Brownian motion and the Onsager-Machlup theory of fluctuations for spatially symmetric systems to equilibrium and nonequilibrium steady-state systems with a preferred spatial direction, due to an external force. To do this, we extend the Langevin equation to include a bias, which is introduced by an external force and alters the Gaussian structure of the system's fluctuations. In addition, by solving this extended equation, we provide a physical interpretation for the statistical properties of the fluctuations in these systems. Connections of the extended Langevin equation with the theory of active Brownian motion are discussed as well.
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.
The role of pregrowth and preculture treatments in terms of both medium composition and exposure duration on survival of embryonic axes of Citrus madurensis after cryopreservation using the vitrification procedure was investigated. The optimal pregrowth treatment for excised embryonic axes was a 3-day treatment with 0.1M sucrose. Preculture was also essential in increasing survival after cryopreservation. Among the various media and treatment durations evaluated, a 24h-preculture of embryonic axes on medium with 0.3M sucrose and 0.5M glycerol was found to be optimal. Using these pregrowth and preculture conditions followed by treatment at 25 degrees C for 20 min each with a loading solution (0.4M sucrose + 2.0M glycerol) and then the PVS2 vitrification solution, direct immersion in liquid nitrogen, rapid rewarming, unloading in a 1.2M sucrose solution for 20 min and transfer of embryonic axes on recovery medium, 82.5% survival and regrowth without intermediary callus formation were obtained with C. madurensis embryonic axes.
A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.
Transfusion of blood is a life-saving intervention that saves many lives. Unsafe practices in blood donation and pre-transfusion testing place people's lives at risk of transfusion transmissible infections (TTIs). The study aims to determine the overall seroprevalence of the selected TTIs for the past 5 years (2013-2017) among blood donors from a hospital in Region 3, Philippines. The trend and distribution of the TTIs according to age group, sex, donor category, and number of donations were also determined. Data extracted include the age, sex, donor category, number of donations, and screening results of all donors from January 2013 to December 2017. The overall seroprevalence of the selected TTIs from over the 5-year period is 4.17%. The seroprevalence rates of hepatitis B, hepatitis C, HIV and syphilis from 2013 to 2017 are 2.87%, 0.48%, 0.10%, and 0.62%, respectively. The age group of 25 to 44 years old showed the highest rate of reactive donors. Also, higher rates of reactive donors are seen among male donors, replacement donors, and first-time donors. The overall seroprevalence of TTIs in the study locale is low and it shows a decreasing trend from 2013 to 2017. Donors who are 25 to 44 years old, males, replacement, and first-time donors showed highest seroprevalence rates of TTIs.
In the present study, locally isolated Rhodococcus strains were attempted as biological tools for methyl red removal, a mutagenic azo dye posing threat to the environment if left untreated. Rhodococcus strain UCC 0016 demonstrated superior methyl red-decolourizing activity of 100% after 24 h at static condition in comparison to Rhodococcus strain UCC 0008 which recorded 65% decolourization after 72 h. Optimization of physicochemical parameters at 30°C, pH 7 and supplementing glucose as the carbon source resulted in improved methyl red-decolourizing activity at static condition and reduced the time taken to achieve complete decolourization by 80%. Higher concentration of methyl red (5 g/L) was able to be decolourized completely within 10 h by adopting the technology of immobilization. The encapsulated cells of Rhodococcus strain UCC 0016 demonstrated higher substrate affinity (Km = 0.6995 g/L) and an accelerated rate of disappearance of methyl red (Vmax = 0.3203 g/L/h) compared to the free cells. Furthermore, the gellan gum beads could be reused up to nine batches without substantial loss in the catalytic activity indicating the economic importance of this protocol. Analysis of methyl red degradation products revealed no germination inhibition on Triticum aestivum and Vigna radiata demonstrating complete toxicity removal of the parent dye after biological treatment. The occurrence of new and altered peaks (UV-Vis and FTIR) further supported the notion that the removal of methyl red by Rhodococcus strain UCC 0016 was indeed through biodegradation. Therefore, this strain has a huge potential as a candidate for efficient bioremediation of wastewater containing methyl red.
The capability of the crude extract of Rhodococcus UKMP-5M was enhanced by adopting the technology of immobilization. Among the matrices screened to encapsulate the crude extract, gellan gum emerged as the most suitable immobilization material, exceeding the activity of cyanide-degrading enzyme by 61% and 361% in comparison to alginate carrier and non-immobilized crude extract, respectively. Improved bead mechanical strength which supported higher biocatalyst activity by 63% was observed when concentration of gellan gum, concentration of calcium chloride, number of beads and bead size were optimized. The immobilized crude extract demonstrated higher tolerance towards broad range of pH (5-10) and temperature (30°C-40°C), superior cyanide-degrading activity over time and improved storage stability by maintaining 76% of its initial activity after 30 days at 4°C. Furthermore, repeated use of the gellan gum beads up to 20 batches without substantial loss in the catalytic activity was documented in the present study, indicating that the durability of the beads and the stability of the enzyme are both above adequate. Collectively, the findings reported here revealed that the utilization of the encapsulated crude extract of Rhodococcus UKMP-5M can be considered as a novel attempt to develop an environmentally favourable and financially viable method in cyanide biodegradation.