METHODS: We performed a comprehensive literature search in Web of Science, PubMed/Medline, Scopus, and Embase databases from inception up to January 2020. We included only randomized controlled trials (RCTs). We used weighted mean difference (WMD) with 95% confidence interval (CI) to assess the influence of omega-3 supplementation on serum 25(OH)D levels using the random-effects model.
RESULTS: Our pooled results of 10 RCTs demonstrated an overall significant increase in 25(OH)D levels following omega-3 intake (WMD = 3.77 ng/ml, 95% CI: 1.29, 6.25). In addition, 25(OH)D levels were significantly increased when the intervention duration lasted >8 weeks and when the baseline serum 25(OH)D level was ˂20 ng/ml. Moreover, omega-3 intake ≤1000 mg/day resulted in higher 25(OH)D levels compared to omega-3 intake >1000 mg/day.
CONCLUSION: In conclusion, omega-3 supplementation increased 25(OH)D concentrations, particularly with dosages ≤1000 mg/day and intervention durations >8 weeks.
METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST.
RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.