Displaying all 15 publications

Abstract:
Sort:
  1. Yoshizawa K, Lienhard C, Ghani IA
    Zootaxa, 2014;3835(4):469-500.
    PMID: 25081466 DOI: 10.11646/zootaxa.3835.4.3
    Species of the bark louse genus Trichadenotecnum Enderlein (Insecta: Psocodea) from Peninsular Malaysia and Singapore are revised with illustrations and identification keys. Twenty species are here recognised, with four new species and ten recorded for the first time from this region, together with an unnamed species represented by a single female. The previously described species T. marginatum New & Thornton is not included because its generic assignment is questionable. Females of T. cinnamonum Endang & New, T. imrum New & Thornton and T. sibolangitense Endang, Thornton & New, and the male of T. kerinciense Endang & New are described for the first time. A new species group is defined for T. krucilense Endang, Thornton & New.
  2. Takahashi N, Bocak L, Ghani IA
    Zootaxa, 2016 Jul 26;4144(1):145-50.
    PMID: 27470845 DOI: 10.11646/zootaxa.4144.1.11
    The net-winged beetle genus Alyculus Kasantsev is reported from Peninsular Malaysia for the first time and a new species, A. malaypeninsularis sp. nov., is described and illustrated. An expanded identification key to Alyculus males is provided and the biology and distribution of the species are discussed.
  3. Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, et al.
    PLoS One, 2014;9(6):e100671.
    PMID: 24968125 DOI: 10.1371/journal.pone.0100671
    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
  4. Mashimo Y, Yoshizawa K, Engel MS, Ghani IA, Dallai R, Beutel RG, et al.
    Zootaxa, 2013;3717:498-514.
    PMID: 26176120
    Three new species of the uncommonly encountered insect order Zoraptera are described and figured from Peninsular Malaysia--Zorotypus magnicaudelli sp. n., Zorotypus cervicornis sp. n., and Zorotypus impolitus sp. n. Another species from the region, identified as Zorotypus caudelli Karny, 1927, was also collected and is reevaluated herein based on new material. A brief discussion of characters used in zorapteran systematics is provided, and a key to the species of Peninsular Malaysia provided. This is the first report for the order Zoraptera from Peninsular Malaysia.
  5. Harith-Fadzilah N, Lam SD, Haris-Hussain M, Ghani IA, Zainal Z, Jalinas J, et al.
    Plants (Basel), 2021 Nov 25;10(12).
    PMID: 34961045 DOI: 10.3390/plants10122574
    The red palm weevil (RPW; Rhynchophorus ferrugineus Olivier (Coleoptera Curculionidae)) is an invasive insect pest that is difficult to manage due to its nature of infesting the host palm trees from within. A holistic, molecular-based approach to identify proteins that correlate with RPW infestation could give useful insights into the vital processes that are prevalent to the host's infestation response and identify the potential biomarkers for an early detection technique. Here, a shotgun proteomic analysis was performed on oil palm (Elaeis guineensis; OP) under untreated (control), wounding by drilling (wounded), and artificial larval infestation (infested) conditions at three different time points to characterise the RPW infestation response at three different stages. KEGG pathway enrichment analysis revealed many overlapping pathways between the control, wounded, and infested groups. Further analysis via literature searches narrowed down biologically relevant proteins into categories, which were photosynthesis, growth, and stress response. Overall, the patterns of protein expression suggested abscisic acid (ABA) hormone signalling to be the primary driver of insect herbivory response. Interspecies molecular docking analysis between RPW ligands and OP receptor proteins provided putative interactions that result in ABA signalling activation. Seven proteins were selected as candidate biomarkers for early infestation detection based on their relevance and association with ABA signalling. The MS data are available via ProteomeXchange with identifier PXD028986. This study provided a deeper insight into the mechanism of stress response in OP in order to develop a novel detection method or improve crop management.
  6. Ghani IA, Dieng H, Abu Hassan ZA, Ramli N, Kermani N, Satho T, et al.
    PLoS One, 2013;8(12):e81642.
    PMID: 24349104 DOI: 10.1371/journal.pone.0081642
    Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera.
  7. Dieng H, Hassan RB, Hassan AA, Ghani IA, Abang FB, Satho T, et al.
    Acta Trop, 2015 May;145:68-78.
    PMID: 25617636 DOI: 10.1016/j.actatropica.2015.01.004
    Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions.
  8. Hamady D, Ruslan NB, Ahmad AH, Rawi CS, Ahmad H, Satho T, et al.
    Parasit Vectors, 2013;6:206.
    PMID: 23856274 DOI: 10.1186/1756-3305-6-206
    Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations.
  9. Dieng H, Rajasaygar S, Ahmad AH, Ahmad H, Rawi CS, Zuharah WF, et al.
    Acta Trop, 2013 Dec;128(3):584-90.
    PMID: 23999373 DOI: 10.1016/j.actatropica.2013.08.013
    Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.
  10. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
  11. Dieng H, Satho T, Abang F, Meli NKKB, Ghani IA, Nolasco-Hipolito C, et al.
    Acta Trop, 2017 May;169:84-92.
    PMID: 28174057 DOI: 10.1016/j.actatropica.2017.01.022
    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.
  12. Dieng H, Ellias SB, Satho T, Ahmad AH, Abang F, Ghani IA, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):14782-14794.
    PMID: 28470499 DOI: 10.1007/s11356-017-8711-4
    In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.
  13. Dieng H, Satho T, Abang F, Miake F, Ghani IA, Latip NA, et al.
    Environ Sci Pollut Res Int, 2017 Sep;24(26):21375-21385.
    PMID: 28744676 DOI: 10.1007/s11356-017-9624-y
    Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals' behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.
  14. Satho T, Dieng H, Ahmad MH, Ellias SB, Hassan AA, Abang F, et al.
    Parasit Vectors, 2015 May 14;8:272.
    PMID: 25966847 DOI: 10.1186/s13071-015-0874-6
    BACKGROUND: Dengue is a prevalent arboviral disease and the development of insecticide resistance among its vectors impedes endeavors to control it. Coffee is drunk by millions of people daily worldwide, which is associated with the discarding of large amounts of waste. Coffee and its waste contain large amounts of chemicals many of which are highly toxic and none of which have a history of resistance in mosquitoes. Once in solution, coffee is brownish in colour, resembling leaf infusion, which is highly attractive to gravid mosquitoes. To anticipate the environmental issues related to the increasing popularity of coffee as a drink, and also to combat insecticide resistance, we explored the deterrence potentials of coffee leachates against the ovipositing and embryonic stages of the dengue vector, Aedes albopictus.

    METHODS: In a series of choice, no-choice, and embryo toxicity bioassays, we examined changes in the ovipositional behaviours and larval eclosion of Ae. albopictus in response to coffee extracts at different concentrations.

    RESULTS: Oviposition responses were extremely low when ovicups holding highly concentrated extract (HCE) of coffee were the only oviposition sites. Gravid females retained increased numbers of mature eggs until 5 days post-blood feeding. When provided an opportunity to oviposit in cups containing coffee extracts and with water, egg deposition occurred at lower rates in those containing coffee, and HCE cups were far less attractive to females than those containing water only. Females that successfully developed in a coffee environment preferentially oviposited in such cups when in competition with preferred oviposition sites (water cups), but this trait did not continue into the fourth generation. Larval eclosion occurred at lower rates among eggs that matured in a coffee environment, especially among those that were maintained on HCE-moistened substrates.

    CONCLUSIONS: The observations of the present study indicate a pronounced vulnerability of Ae. albopictus to the presence of coffee in its habitats during the early phases of its life cycle. The observations that coffee repels gravid females and inhibits larval eclosion provide novel possibilities in the search for novel oviposition deterrents and anti-larval eclosion agents against dengue vectors.

  15. Dieng H, Satho T, Abang F, Miake F, Azman FAB, Latip NA, et al.
    Indian J Med Res, 2018 Sep;148(3):334-340.
    PMID: 30425225 DOI: 10.4103/ijmr.IJMR_1604_16
    Background & objectives: In sterile insect technology (SIT), mating competitiveness is a pre-condition for the reduction of target pest populations and a crucial parameter for judging efficacy. Still, current SIT trials are being hindered by decreased effectiveness due to reduced sexual performance of released males. Here, we explored the possible role of a herbal aphrodisiac in boosting the mating activity of Aedes aegypti.

    Methods: Males were fed one of two diets in this study: experimental extract of Eurycoma longifolia (MSAs) and sugar only (MSOs). Differences in life span, courtship latency, copulation activity and mating success were examined between the two groups.

    Results: No deaths occurred among MSA and MSO males. Life span of MSOs was similar to that of MSAs. The courtship latency of MSAs was shorter than that of MSOs (P<0.01). MSAs had greater copulation success than MSOs (P<0.001). In all female treatments, MSAs mated more than MSOs, but the differences in rate were significant only in the highest female density (P<0.05). In MSAs, mating success varied significantly with female density (P<0.01), with the 20-female group (P<0.01) having the lowest rate. Single MSA had better mating success at the two lowest female densities. In MSOs, there were no significant differences in mating success rate between the different female densities.

    Interpretation & conclusions: Our results suggested that the herbal aphrodisiac, E. longifolia, stimulated the sexual activity of Ae. aegypti and may be useful for improving the mating competitiveness of sterile males, thus improving SIT programmes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links