Displaying all 10 publications

Abstract:
Sort:
  1. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
  2. Mohamed Isa ED, Ahmad H, Abdul Rahman MB, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498885 DOI: 10.3390/pharmaceutics13020152
    Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.
  3. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498795 DOI: 10.3390/pharmaceutics13020150
    The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box-Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g-1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.
  4. Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, et al.
    Sci Rep, 2016 08 25;6:31973.
    PMID: 27558808 DOI: 10.1038/srep31973
    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
  5. Yusoh NA, Chia SL, Saad N, Ahmad H, Gill MR
    Sci Rep, 2023 Jan 26;13(1):1456.
    PMID: 36702871 DOI: 10.1038/s41598-023-28454-x
    Poly(ADP-ribose) polymerase (PARP) are critical DNA repair enzymes that are activated as part of the DNA damage response (DDR). Although inhibitors of PARP (PARPi) have emerged as small molecule drugs and have shown promising therapeutic effects, PARPi used as single agents are clinically limited to patients with mutations in germline breast cancer susceptibility gene (BRCA). Thus, novel PARPi combination strategies may expand their usage and combat drug resistance. In recent years, ruthenium polypyridyl complexes (RPCs) have emerged as promising anti-cancer candidates due to their attractive DNA binding properties and distinct mechanisms of action. Previously, we reported the rational combination of the RPC DNA replication inhibitor [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = 2-(phenyl)-imidazo[4,5-f][1,10]phenanthroline), "Ru-PIP", with the PARPi Olaparib in breast cancer cells. Here, we expand upon this work and examine the combination of Ru-PIP with Olaparib for synergy in lung cancer cells, including in 3D lung cancer spheroids, to further elucidate mechanisms of synergy and additionally assess toxicity in a zebrafish embryo model. Compared to single agents alone, Ru-PIP and Olaparib synergy was observed in both A549 and H1975 lung cancer cell lines with mild impact on normal lung fibroblast MRC5 cells. Employing the A549 cell line, synergy was confirmed by loss in clonogenic potential and reduced migration properties. Mechanistic studies indicated that synergy is accompanied by increased double-strand break (DSB) DNA damage and reactive oxygen species (ROS) levels which subsequently lead to cell death via apoptosis. Moreover, the identified combination was successfully able to inhibit the growth of A549 lung cancer spheroids and acute zebrafish embryos toxicity studies revealed that this combination showed reduced toxicity compared to single-agent Ru-PIP.
  6. Hayat K, Arshed M, Fiaz I, Afreen U, Khan FU, Khan TA, et al.
    Front Public Health, 2021;9:603602.
    PMID: 33981657 DOI: 10.3389/fpubh.2021.603602
    Background: The novel coronavirus (COVID-19) pandemic has significantly increased the rate of mortality and morbidity worldwide due to its rapid transmission rate. The mental health status of individuals could have a negative impact attributed to this global situation. Therefore, this study was intended to explore the symptoms of depression and anxiety among healthcare workers (HCWs) of Pakistan during the ongoing COVID-19 pandemic. Methods: A cross-sectional survey was undertaken by administering a web-based questionnaire between May and June 2020. Two tools, including the Patient Health Questionnaire (PHQ9) and Generalized Anxiety Disorder-7 (GAD-7), were employed to measure anxiety and depression symptoms among HCWs. The data analyses were carried out using descriptive statistics, Man Whitney, and Kruskal Wallis tests. Results: Of 1094 HCWs who participated in this online survey, 742 (67.8%) were physicians, followed by nurses (n = 277, 25.3%) and pharmacists (n = 75, 6.9%). The survey respondents had a median depression and anxiety score of 5.00 (7.00-3.00) and 8.00 (11.00-5.00), respectively. A considerable number of HCWs (82.2%) utilized online psychological resources to deal with their psychological distress. Female HCWs, nurses, frontline HCWs, and HCWs aged 30-49 years were more likely to suffer from depression and anxiety (p < 0.05). Conclusion: During the recent ongoing pandemic of COVID-19, there is a mild level of symptoms of depression and anxiety among HCWs. Our findings call for urgent psychological interventions for vulnerable groups of Pakistani HCWs.
  7. Yusoh NA, Leong SW, Chia SL, Harun SN, Rahman MBA, Vallis KA, et al.
    ACS Chem. Biol., 2020 02 21;15(2):378-387.
    PMID: 31898884 DOI: 10.1021/acschembio.9b00843
    There is a need to improve and extend the use of clinically approved poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi), including for BRCA wild-type triple-negative breast cancer (TNBC). The demonstration that ruthenium(II) polypyridyl complex (RPC) metallointercalators can rapidly stall DNA replication fork progression provides the rationale for their combination alongside DNA damage response (DDR) inhibitors to achieve synergism in cancer cells. The aim of the present study was to evaluate use of the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = (2-(phenyl)imidazo[4,5-f][1,10]phenanthroline, Ru-PIP) alongside the PARPi olaparib and NU1025. Cell proliferation and clonogenic survival assays indicated a synergistic relationship between Ru-PIP and olaparib in MDA-MB-231 TNBC and MCF7 human breast cancer cells. Strikingly, low dose Ru-PIP renders both cell lines hypersensitive to olaparib, with a >300-fold increase in olaparib potency in TNBC, the largest nongenetic PARPi enhancement effect described to date. A negligible impact on the viability of normal human fibroblasts was observed for any combination tested. Increased levels of DNA double-strand break (DSB) damage and olaparib abrogation of Ru-PIP-activated pChk1 signaling are consistent with PARPi-facilitated collapse of Ru-PIP-associated stalled replication forks. This results in enhanced G2/M cell-cycle arrest, apoptosis, and decreased cell motility for the combination treatment compared to single-agent conditions. This work establishes that an RPC metallointercalator can be combined with PARPi for potent synergy in BRCA-proficient breast cancer cells, including TNBC.
  8. Walker MG, Jarman PJ, Gill MR, Tian X, Ahmad H, Reddy PA, et al.
    Chemistry, 2016 Apr 18;22(17):5996-6000.
    PMID: 27000412 DOI: 10.1002/chem.201600852
    Although metal-ion-directed self-assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self-assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2 Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.
  9. Elgar CE, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, et al.
    J Am Chem Soc, 2023 Jan 18;145(2):1236-1246.
    PMID: 36607895 DOI: 10.1021/jacs.2c11111
    Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
  10. Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, et al.
    J Med Chem, 2023 May 25;66(10):6922-6937.
    PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322
    Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links