Displaying all 8 publications

Abstract:
Sort:
  1. Kadir AA, Hamid AH, Mohammad M
    J Tradit Complement Med, 2015 Jul;5(3):157-60.
    PMID: 26151028 DOI: 10.1016/j.jtcme.2014.11.010
    Complementary and alternative medicine (CAM; bǔ chōng yǔ tì dài yī xué) is widely practiced among stroke patients globally. We conducted a study to determine the pattern of CAM use and its associated factors in stroke survivors attending a tertiary hospital in Malaysia within 6 months after the stroke. This was a prospective cohort study that included all stroke patients who were admitted to a tertiary center in Malaysia from December 2009 to December 2010. Patients were interviewed and examined within 72 hours of admission. The sociodemographic data and medical history were collected. Clinical examinations were done to assess the stroke severity using the Scandinavian Stroke Scale and functional status based on modified Barthel index (MBI). Patients were reassessed at 6 months after the stroke on the CAM use and functional status (MBI). The response rate was 92%. The study population consisted of 52 men and 41 women with a mean age of 63.7 ± 10.3 years. Sixty-seven percent practiced CAM. Massage was the most frequently used method (63.4%), followed by vitamins (7.5%). In multiple logistic regression analysis, functional status (MBI score) on discharge (p = 0.004, odds ratio 1.034, 95% confidence interval 1.01-1.06) and Scandinavian Stroke Scale score (p = 0.045, odds ratio 1.87, 95% confidence interval 1.01-3.43) were significant predictors for use of CAM. In conclusion, the use of CAM among stroke survivors is high. Patients who have better functional status on discharge and less severe stroke are more likely to use CAM.
  2. Akram A, Hamid AH, Razak J, Hock TT
    Int Dent J, 2011 Feb;61(1):31-6.
    PMID: 21382031 DOI: 10.1111/j.1875-595X.2011.00006.x
    To design a new tooth notation system to record and communicate dental and periodontal problems around the world.
  3. Shahfiza N, Osman H, Hock TT, Shaari K, Abdel-Hamid AH
    Asian Pac J Trop Med, 2015 Jun;8(6):451-6.
    PMID: 26194829 DOI: 10.1016/j.apjtm.2015.05.012
    OBJECTIVE: To determine the metabolic response associate with dengue infection based on human gender metabolic differences by means of (1)H NMR-spectrometry.

    METHODS: The mid-stream urine collected from both male and female patients diagnosed with dengue fever at Penang General Hospital and fourty-three healthy individuals were analyzed with (1)H NMR spectroscopy, followed by chemometric multivariate analysis. NMR signals which highlighted in the OPLS-DA S-plot were further selected and identified using Human Metabolome Database, Chenomx Profiler.

    RESULTS: The results pointed out that NMR urine profiling was able to capture human gender metabolic differences that are important for the distinction of classes of individuals of similar physiological conditions; infected with dengue. Distinct differences between dengue infected patients versus healthy individuals and subtle differences in male versus female infected with dengue were found to be related to the metabolism of amino acid and tricarboxylic acid intermediates cycle.

    CONCLUSIONS: The (1)H NMR metabolomic investigation combined with appropriate algorithms and pattern recognition procedures, gave an evidence for the existence of distinct metabolic differentiation of individuals, according to their gender, modulates with the infection risk.

  4. Tajudin MABA, Khan MF, Mahiyuddin WRW, Hod R, Latif MT, Hamid AH, et al.
    Ecotoxicol Environ Saf, 2019 Apr 30;171:290-300.
    PMID: 30612017 DOI: 10.1016/j.ecoenv.2018.12.057
    Rapid urbanisation in Malaysian cities poses risks to the health of residents. This study aims to estimate the relative risk (RR) of major air pollutants on cardiovascular and respiratory hospitalisations in Kuala Lumpur. Daily hospitalisations due to cardiovascular and respiratory diseases from 2010 to 2014 were obtained from the Hospital Canselor Tuanku Muhriz (HCTM). The trace gases, PM10 and weather variables were obtained from the Department of Environment (DOE) Malaysia in consistent with the hospitalisation data. The RR was estimated using a Generalised Additive Model (GAM) based on Poisson regression. A "lag" concept was used where the analysis was segregated into risks of immediate exposure (lag 0) until exposure after 5 days (lag 5). The results showed that the gases could pose significant risks towards cardiovascular and respiratory hospitalisations. However, the RR value of PM10 was not significant in this study. Immediate effects on cardiovascular hospitalisations were observed for NO2 and O3 but no immediate effect was found on respiratory hospitalisations. Delayed effects on cardiovascular and respiratory hospitalisations were found with SO2 and NO2. The highest RR value was observed at lag 4 for respiratory admissions with SO2 (RR = 1.123, 95% CI = 1.045-1.207), followed by NO2 at lag 5 for cardiovascular admissions (RR = 1.025, 95% CI = 1.005-1.046). For the multi-pollutant model, NO2 at lag 5 showed the highest risks towards cardiovascular hospitalisations after controlling for O3 8 h mean lag 1 (RR = 1.026, 95% CI = 1.006-1.047), while SO2 at lag 4 showed highest risks towards respiratory hospitalisations after controlling for NO2 lag 3 (RR = 1.132, 95% CI = 1.053-1.216). This study indicated that exposure to trace gases in Kuala Lumpur could lead to both immediate and delayed effects on cardiovascular and respiratory hospitalisations.
  5. Samsuddin NAC, Khan MF, Maulud KNA, Hamid AH, Munna FT, Rahim MAA, et al.
    Sci Total Environ, 2018 Jul 15;630:1502-1514.
    PMID: 29554768 DOI: 10.1016/j.scitotenv.2018.02.289
    Southeast Asian haze is a semi-natural phenomenon that chokes the region each year during the dry monsoon season. Smoke-haze episodes caused by the vegetation and peat fires in Indonesia severely affected large parts of Malaysia during the 2015 El Niño phenomenon. This study aimed to evaluate the factors that influenced the concentrations of aerosol and trace gases during the 2015 haze and non-haze period on a semi-urban site in the southern part of Malaysian peninsula that facing Sumatra (Muar, Site A), and on an urban site near to Kuala Lumpur, influenced by the city centre (Cheras, Site B). Local land use data and the cluster of air mass weighted backward trajectory were used to identify the potential factors from local sources and the transboundary region, respectively. The annual median concentrations of PM10 for semi-urban and urban sites were 45.0μg/m3 and 47.0μg/m3, respectively for the study period (Jan-Dec 2015) from the hourly observation dataset. The highest PM10 concentrations during the haze were 358μg/m3 and 415μg/m3 for the two sites, respectively, representing absolutely unhealthy air. However, the trace gases were within the safe threshold. The average concentrations of PM10 and carbon monoxide were two fold higher during the haze than the non-haze episodes on both sites. Nitrogen dioxide was more influenced by haze compared with sulphur dioxide and ozone. The results of the land use change suggest that the local factor can also partially affect the air pollution on the urban area (Site B) but more visible in 2015. The results of the backward trajectory and the wildfire radiative power showed that the smoke-haze episodes that affected Malaysia in 2015 were mainly initiated in the Indonesian Sumatra and Kalimantan regions. This study provides a very useful information towards the impacted region during El Niño haze episode.
  6. Tharumaraja T, Che-Ahmad A, Wong PF, Ahmad Hamid AH, Hasan MI, Bajuri MY, et al.
    Malays Fam Physician, 2021 Mar 25;16(1):103-113.
    PMID: 33948148 DOI: 10.51866/cpg0001
    Diabetic foot requires careful attention and coordinated management by a dedicated team. Screening, prevention, adequate assessment, and appropriate referral are crucial to prevent complications. Multimodal treatment and rehabilitation are recommended to ensure a better quality of life and reduction of amputation rate in people with diabetic foot.
  7. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
  8. Khan MF, Hamid AH, Rahim HA, Maulud KNA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2020 Aug 15;730:139091.
    PMID: 32413602 DOI: 10.1016/j.scitotenv.2020.139091
    The Southeast Asian (SEA) region is no stranger to forest fires - the region has been suffering from severe air pollution (known locally as 'haze') as a result of these fires, for decades. The fires in SEA region are caused by a combination of natural (the El Niño weather pattern) and manmade (slash-and-burn and land clearing for plantations) factors. These fires cause the emissions of toxic aerosols and pollutants that can affect millions of people in the region. Thus, this study aims to identify the impact of the SEA haze on the Southern region of the Malaysian Peninsula and Borneo region of East Malaysia using the entire air quality observation data at surface level in 2015. Overall, the concentration of PM10 was about two-fold higher during the haze period compared to non-haze period. The concentrations of CO, flux of CO and flux of BC were aligned with PM10 during the entire observation period. The wind field and cluster of trajectory indicated that the Southern Malaysian Peninsula and Borneo were influenced mainly from the wildfires and the combustion of peat soil in the Indonesian Borneo. This study finds that wildfires from Borneo impacted the Southern Malaysian Borneo more seriously than that from Sumatra region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links