Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has reportedly been a significant source of exposure for both compounds. Hence, this study was performed to develop and validate an analytical method for PFOS and PFOA in egg yolks using liquid chromatographic tandem mass spectrometry (LC-MS/MS) followed by the determination of concentration of both compounds in the yolk of poultry eggs in Malaysia. A total of 47 poultry egg yolk samples were extracted by a simple protein precipitation technique using acetonitrile. The analytical method was developed using LC-MS/MS and validated based on the Food and Drug Administration (FDA)'s Bioanalytical Method Validation guidelines. The results revealed that PFOS was quantitatively detected in six samples, with the concentration range between 0.5 and 1.01 ng g-1. Among these, five samples were from home-produced chicken eggs, and one sample was from a quail egg. The levels of PFOA in all samples were below the quantifiable limit (<0.1 ng g-1). This indicated that the contamination of PFCs in poultry eggs were mostly attributed to the nature of free foraging animals, which had direct contact with the contaminants in soil and feed. In conclusion, a fast and robust analytical method for analyzing PFOS and PFOA in egg yolk samples using LC-MS/MS was successfully developed and validated. The presence of these emerging contaminants in this study signified widespread pollution in the environment.
Migration of melamine has been determined for 41 types of retail melamine-ware products in Malaysia. This study was initiated by the Ministry of Health, Malaysia, in the midst of public anxiety on the possibility of melamine leaching into foods that come into contact with the melamine-ware. Thus, the objective of this study was to investigate the level of melamine migration in melamine utensils available on the market. Samples of melamine tableware, including cups and plates, forks and spoons, tumblers, bowls, etc., were collected from various retail outlets. Following the test guidelines for melamine migration set by the European Committee for Standardisation (CEN 2004) with some modifications, the samples were exposed to two types of food simulants (3% acetic acid and distilled water) at three test conditions (25°C (room temperature), 70 and 100°C) for 30 min. Melamine analysis was carried out using LC-MS/MS with a HILIC column and mobile phase consisting of ammonium acetate/formic acid (0.05%) in water and ammonium acetate/formic acid (0.05%) in acetonitrile (95 : 5, v/v). The limit of quantification (LOQ) was 5 ng/ml. Melamine migration was detected from all samples. For the articles tested with distilled water, melamine migration were [median (interquartile range)] 22.2 (32.6), 49.3 (50.9), 84.9 (89.9) ng/ml at room temperature (25°C), 70 and 100°C, respectively. In 3% acetic acid, melamine migration was 31.5 (35.7), 81.5 (76.2), 122.0 (126.7) ng/ml at room temperature (25°C), 70 and 100°C, respectively. This study suggests that excessive heat and acidity may directly affect melamine migration from melamine-ware products. However the results showed that melamine migration in the tested items were well below the specific migration limit (SML) of 30 mg/kg (30,000 ng/ml) set out in European Commission Directive 2002/72/EC.
Transdermal preparations for testosterone are becoming popular because of their unique advantages such as avoidance of first-pass effect, convenience, improved bioavailability, and reduction of systemic side effects. A novel testosterone transdermal delivery system (TDDS) was developed using a palm oil base called HAMIN™ (a commercial product) and tested using in vitro and in vivo skin permeability test methods.
Fourteen beta-agonists were quantitatively analyzed in cattle, chicken and swine liver specimens purchased at 14 wet markets in Selangor State, Malaysia, by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The health risks of ractopamine and clenbuterol residues in the Malaysian population were assessed based on quantitative data and meat consumption statistics in Malaysia. Wastewater samples collected at swine farms (n = 2) and cattle/cow farms (n = 2) in the Kuala Langat district were analyzed for the presence for the 14 compounds. Wastewater in chicken farms was not collected because there was negligible discharge during the breeding period. The environmental impacts caused by beta-agonists discharged from livestock farms were spatially assessed in the Langat River basin using a geographic information system (GIS). As a result, 10 compounds were detected in the liver specimens. Ractopamine, which is a permitted compound for swine in Malaysia, was frequently detected in swine livers; also, 9 other compounds that are prohibited compounds could be illegally abused among livestock farms. The health risks of ractopamine and clenbuterol were assessed to be minimal as their hazard quotients were no more than 7.82 × 10(-4) and 2.71 × 10(-3), respectively. Five beta-agonists were detected in the wastewater samples, and ractopamine in the swine farm resulted in the highest contamination (30.1 μg/L). The environmental impacts of the beta-agonists in the Langat River basin were generally concluded to be minimal, but the ractopamine contamination released from swine farms was localized in coastal areas near the estuary of the Langat River basin because most swine farms were located in that region.
Endocrine disrupting chemicals (EDCs) such as per- and polyfluoroalkyl substances (PFAS), bisphenols, and parabens are used in food packaging or as preservatives and their unintended consumption has been associated with cancer and other diseases. Food EDCs data are scarce in Malaysia. Thus, liquid chromatography mass tandem spectrometry (LC-MS/MS) was utilised to analyse 18 EDCs from different food categories. Bisphenol was the most abundant EDC found, followed by PFAS and paraben. Bisphenol levels in canned foods, dairy products, canned drinks, fruits, and vegetables ranged from 1.16 to 183 ng/g. PFAS was found in almost every food category, with canned foods having the highest concentrations (0.18-34.5 ng/g). Only canned foods, fruits, and vegetables contained parabens, with mean concentrations ranging from 0.27 to 26.7 ng/g. PFOS, PFBA, PFHQA and bisphenol A all had hazard quotients (HQ) above 1, indicating that they can pose a risk to human health.
For decades, perfluoroalkyl acids (PFAAs) have been commonly used for industrial and commercial purposes due to their water- and stain-resistant properties. Persistent pollutants that contain PFAAs have been associated with adverse health effects in humans, and many studies have documented dietary intake, indoor air inhalation, and dermal contact as the potential routes for human exposure to PFAAs. The aim of this study was to assess the level of PFAAs in the serum samples of a general population in a specific region in Malaysia. Using 219 serum samples collected from residents of Klang Valley, Malaysia, the levels of nine PFAAs were analyzed using liquid chromatography-tandem mass spectrometry. In addition, questionnaire surveys on the dietary habits and lifestyles of the subjects were conducted. The results showed that PFAA concentrations of up to 32.57 ng/mL were detected in all serum samples. In 82.6% of the participants, at least seven PFAAs were detected in the serum samples, with perfluorooctanesulfonic acid being the predominant PFAA (median = 8.79 ng/mL). In the adjusted regression model, the concentrations of most PFAAs were higher in men than in women and positively correlated with age, although body mass index and smoking were not significantly associated with the serum PFAA concentrations. Taking into consideration the lifestyle variables, significant associations were found between nonstick cookware and perfluorononanoic acid, between dental floss and cosmetics and perfluorodecanoic acid (PFDA), and between leather sofa and perfluoroundecanoic acid (PFUnDA). Besides, consumption of beef was significantly associated with increased levels of serum PFUnDA, whereas consumption of lamb and chicken eggs was negatively associated with the serum levels of PFUnDA and PFDA, respectively.
This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.
Head and neck squamous cell carcinoma (HNSCC) represents a significant world health problem, with approximately 600,000 new cases being diagnosed annually. The prognosis for patients with HNSCC is poor and, therefore, the identification of biomarkers for screening, diagnosis and prognostication would be clinically beneficial. A limited number of studies have used lipidomics to profile lipid species in the plasma of cancer patients. However, the profile and levels of lysophosphatidic acid (LPA) species have not been examined in HNSCC. In this study, a targeted lipidomics approach using liquid chromatography triple quadrupole mass spectrometry (LCMS/MS) was used to analyse the concentration of LPA (16:0 LPA, 18:0 LPA, 18:1 LPA, 18:2 LPA and 20:4 LPA) in the plasma of patients with oral squamous cell carcinoma (OSCC) and nasopharyngeal carcinoma (NPC), together with healthy controls. The levels of three LPA species (18:1 LPA, 18:2 LPA and 20:4 LPA) were significantly lower in the plasma of OSCC patients, whilst the concentrations of all five LPA species tested were significantly lower in plasma from NPC patients. Furthermore, the order of abundance of LPA species in plasma was different between the control and cancer groups, with 16:0 LPA, 18:0 LPA levels being more abundant in OSCC and NPC patients. Medium to strong correlations were observed using all pairs of LPA species and a clear separation of the normal and tumour groups was observed using PCA analysis. In summary, the results of this study showed that the levels of several LPA species in the plasma of patients with OSCC and NPC were lower than those from healthy individuals. Understanding these variations may provide novel insights into the role of LPA in these cancers.