The aim of this study was to determine the effect of chitosan and chitosan oligosaccharides (COS),
prepared by enzymatic hydrolysis with cellulase from Trichoderma reesei, Celluclast® on the growth of
Bifidobacterium sp. The growth of the two bacteria strains were determined every 12 h for 48 h under
anaerobic incubation at 37 °C in four MRS media containing lactose, COS, chitosan and inulin. The
bacteria cell growth in substrate-added medium increased significantly after 48 h of incubation, except
for the chitosan medium. COS was found to have a similar growth effect on B. bifidum ATCC 11863
and B. breve ATCC 15700 when compared with inulin and lactose. The pH of medium containing
COS, inulin and lactose fermented with B. bifidum ATCC 11863 and B. breve ATCC 15700 decreased
rapidly after 12 h. B. bifidum ATCC 11863 showed the highest specific growth rate at 12 h. The results
revealed that COS support the growth of probiotic bacteria, thus indicating that COS has the potential
as new prebiotic source in the functional food industry.
This study was conducted to evaluate the potential of pineapple peel (PP) and pineapple crown leaves (PCL) as the substrate for vanillic acid and vanillin production. About 202 ± 18 mg L-1 and 120 ± 11 mg L-1 of ferulic acid was produced from the PP and PCL respectively. By applied response surface methodology, the ferulic acid yield was increased to 1055 ± 160 mg L-1 by treating 19.3% of PP for 76 min, and 328 ± 23 mg L-1 by treating 9.9% of PCL for 36 min in aqueous sodium hydroxide solution at 120 °C. The results revealed that PP extract was better than PCL extract for vanillic acid and vanillin production. Furthermore, the experiment also proved that large volume feeding was more efficient than small volume feeding for high vanillic acid and vanillin yield. Through large volume feeding, about 7 ± 2 mg L-1 of vanillic acid and 5 ± 1 mg L-1 of vanillin was successfully produced from PP extract via Aspergillus niger fermentation.
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
Results from the present study have shown that the ionic species of buffers, pH values and reaction temperature can affect the enzyme unit activities and product specificity of Toruzyme (Novo Nordisk A/S Bagsvaerd, Denmark) CGTase (cyclodextrin glucanotransferase). Applying a similar reaction environment (acetate buffer, pH 6.0; temperature, 60 degrees C), the CGTase was found to be capable of producing pre dominantly beta-cyclodextrin from either raw or gelatinized sago (Cycas revoluta) starch. Changing the buffer from acetate to phosphate reduced the yield of beta-cyclodextrin from 2.48 to 1.42 mg/ml and also affected the product specificity, where production of both alpha- and beta-cyclodextrins were more pronounced. The decrease in the production of cyclodextrins in phosphate buffer was significant at both pH 6.0 and 7.0. However, changing the buffer to Tris/HCl (pH 7.0) showed a significant increase in beta-cyclodextrin production. Increasing the ionic strength of sodium acetate and Tris/HCl buffers at pH 6.0 and 7.0 to equivalent ionic strength of phosphate buffers showed no significant effects on cyclodextrin production. Higher yield of cyclodextrins at pH 7.0 when Tris/HCl was used might be due to the binding of chloride ions at the calcium-binding sites of the CGTase, resulting in the shift of the optimum pH close to physiological environment, leading to an increase in the activities and specificity.
It is widely believed that reducing the lignocellulosic biomass particle size would improve the biomass digestibility by increasing the total surface area and eliminating mass and heat transfer limitation during hydrolysis reactions. However, past studies demonstrate that particle size influences biomass digestibility to a limited extent. Thus, this paper studies the effect of particle size (milled: 2 mm, 5 mm, cut: 2 cm and 5 cm) on rice straw conversion. Two different Ammonia Fiber Expansion (AFEX) pretreament conditions, AFEX C1 (low severity) and AFEX C2 (high severity) are used to pretreat the rice straw (named as AC1RS and AC2RS substrates respectively) at different particle size.
The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60 degrees C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% beta-cyclodextrin (CD) and 10% gamma-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of beta-CD.
Fucoidan is a sulfated polysaccharide that consists mainly of fucose and is found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterized in terms of composition, structure and toxicology. It was found that the molecular weight, polydispersity index, monosaccharide profile and degree of sulfation of Fsar differed from those of commercial food-grade fucoidan (Fysk). NMR analysis suggested that the main structure of Fsar was →3)fuc-2-OSO3-(1→3)fuc-2-OSO3-(1→. A cytotoxicity study employing up to 200 mg/mL Sargassum binderi extract showed that cell inhibition was less than 50% (IC50), while acute toxicity results classified S. binderi as category 5 (unclassified) according to the OECD Guideline 423, as no mortality was observed at the highest dosage (2,000 mg/kg). Both toxicity results showed that this material is safe to be consumed. The chemical characteristics and non-toxicity of Fsar demonstrate its potential in biological and food product applications.
Thirty-two samples of chocolate products were analysed by HPLC for caffeine and theobromine contents. Defatted residues of samples were extracted with 80% aqueous acetone. After extraction into boiling water, the methylxanthines were identified and quantified with the use of μ-Bondapak column and mobile phase of methanol:water:acetic acid (20:79:1). Levels of caffein and theobromine in 32 samples of chocolate products averaged 0.62-1.14 mg/g and 0.026-0.153 mg/g respectively. Mean values for theobromine and caffeine content for chocolate coating were 0.82 and 0.07 mg/g respectively. The chocolate coating made from fat substitute had theobromine and caffeine levels ranging from 0.36-0.70 mg/g and 0.027-0.061 mg/g respectively, with mean values of 0.49 mg theobromine/g and 0.039 mg caffeine/g. In local chocolate, the mean theobromine and caffeine levels respectively were 0.72 mg/g and 0.04 mg/g in milk chocolate, and 0.85 mg/g and 0.06 mg/g in dark chocolate. Meanwhile, for imported chocolate, the mean theobromine and caffeine levels respectively were 1.05 mg/g and 0.12 mg/g in dark chocolate; 0.76 mg/g and 0.04 mg/g in milk chocolate; and 0.74 mg/g and 0.03 mg/g in white chocolate. Compared with the local chocolates, imported chocolates had higher levels of theobromine and caffeine at 1.141 mg/g and 0.1533mg/g. The average theobromine and caffeine concentrations in local chocolate were 0.082mg/g and 0.066mg/g. Theobromine concentration in chocolate samples is within the range of 0.62mg/g-1.141mg/g and the range of caffeine concentration is 0.026mg/g-0.153mg/g respectively. Bittersweet chocolates were found to have higher theobromine and caffeine concentrations than normal sweet chocolates and milk chocolates.
Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near-full-length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.
Fucoidan is a sulphated polysaccharide that consists mainly of fucose, normally found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterised. The chemical characteristics of Fsar were found to be different than those of commercial food grade fucoidan (Fysk) and those of previously studied fucoidans. NMR analysis proposed that the main structure of Fsar is →3)fuc-2-OSO3(-)(1→3)fuc(1→. The molecular weight (47.87kDa) and degree of sulphation (0.20) of Fsar were higher than those of Fysk, at 27.98kDa and 0.15, respectively. However, Fsar's polydispersity index (1.12) and fucose content (34.50%) were lower than those of Fysk, at 1.88 and 43.30%, respectively. Both Fsar and Fysk showed similar thermo-gravimetric properties with four mass losses, amorphous in nature and negative optical rotations. Results show that Fsar has fundamental characteristics of fucoidan with different structural conformation i.e. variation in glycosidic linkages and sulphate group orientation.
Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.