METHODS: Five single maxillary premolar extraction sockets received PRF-CS grafts and five single maxillary premolar sockets received PRF-X grafts. Linear (horizontal and vertical) measurements were accomplished using Cone Beam Computed Tomography (CBCT) images and volumetric changes were assessed using MIMICS software. Soft tissue level changes were measured using Stonecast models. All measurements were recorded at baseline (before extraction) and at 5-months post-extraction.
RESULTS: Significant reduction in vertical and horizontal dimensions were observed in both groups except for distal bone height (DBH = 0.44 ± 0.45 mm, p = 0.09) and palatal bone height (PBH = 0.39 ± 0.34 mm, p = 0.06) in PRF-X group. PRF-CS group demonstrated mean horizontal shrinkage of 1.27 ± 0.82 mm (p = 0.02), when compared with PRF-X group (1.40 ± 0.85 mm, p = 0.02). Vertical resorption for mesial bone height (MBH = 0.56 ± 0.25 mm, p = 0.008), buccal bone height (BBH = 1.62 ± 0.91 mm, p = 0.01) and palatal bone height (PBH = 1.39 ± 0.87 mm, p = 0.02) in PRF-CS group was more than resorption in PRF-X group (MBH = 0.28 ± 0.14 mm, p = 0.01, BBH = 0.63 ± 0.39 mm, p = 0.02 and PBH = 0.39 ± 0.34 mm, p = 0.06). Volumetric bone resorption was significant within both groups (PRF-CS = 168.33 ± 63.68 mm3, p = 0.004; PRF-X = 102.88 ± 32.93 mm3, p = 0.002), though not significant (p = 0.08) when compared between groups. In PRF-X group, the distal soft tissue level (DSH = 1.00 ± 0.50 mm, p = 0.03) demonstrated almost 2 times more reduction when compared with PRF-CS group (DSH = 1.00 ± 1.00 mm, 0.08). The reduction of the buccal soft tissue level was pronounced in PRF-CS group (BSH = 2.00 ± 2.00 mm, p = 0.06) when compared with PRF-X group (BSH = 1.00 ± 1.50 mm, p = 0.05).
CONCLUSIONS: PRF-CS grafted sites showed no significant difference with PRF-X grafted sites in linear and volumetric dimensional changes and might show clinical benefits for socket augmentation. The study is officially registered with ClinicalTrials.gov Registration (NCT03851289).
METHODS: This review article discusses the experimental and computational methods in the study of HUA. The discussion includes computational fluid dynamics approach and steps involved in the modeling used to investigate the flow characteristics of HUA. From inception to May 2020, databases of PubMed, Embase, Scopus, the Cochrane Library, BioMed Central, and Web of Science have been utilized to conduct a thorough investigation of the literature. There had been no language restrictions in publication and study design of the database searches. A total of 117 articles relevant to the topic under investigation were thoroughly and critically reviewed to give a clear information about the subject. The article summarizes the review in the form of method of studying the HUA, CFD approach in HUA, and the application of CFD for predicting HUA obstacle, including the type of CFD commercial software are used in this research area.
RESULTS: This review found that the human upper airway was well studied through the application of computational fluid dynamics, which had considerably enhanced the understanding of flow in HUA. In addition, it assisted in making strategic and reasonable decision regarding the adoption of treatment methods in clinical settings. The literature suggests that most studies were related to HUA simulation that considerably focused on the aspects of fluid dynamics. However, there is a literature gap in obtaining information on the effects of fluid-structure interaction (FSI). The application of FSI in HUA is still limited in the literature; as such, this could be a potential area for future researchers. Furthermore, majority of researchers present the findings of their work through the mechanism of airflow, such as that of velocity, pressure, and shear stress. This includes the use of Navier-Stokes equation via CFD to help visualize the actual mechanism of the airflow. The above-mentioned technique expresses the turbulent kinetic energy (TKE) in its result to demonstrate the real mechanism of the airflow. Apart from that, key result such as wall shear stress (WSS) can be revealed via turbulent kinetic energy (TKE) and turbulent energy dissipation (TED), where it can be suggestive of wall injury and collapsibility tissue to the HUA.