Displaying publications 1 - 20 of 140 in total

Abstract:
Sort:
  1. Islam MT, Samsuzzaman M
    ScientificWorldJournal, 2014;2014:673846.
    PMID: 24987742 DOI: 10.1155/2014/673846
    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.
  2. Samsuzzaman M, Islam MT
    ScientificWorldJournal, 2014;2014:604375.
    PMID: 24895656 DOI: 10.1155/2014/604375
    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the -10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69-9.14 GHz), at middle band is 9.13% (10.47-11.48 GHz), and at upper band is 3.79% (11.53-11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications.
  3. Samsuzzaman M, Islam MT
    Sensors (Basel), 2018 Dec 04;18(12).
    PMID: 30518080 DOI: 10.3390/s18124261
    A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22⁻9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28⁻4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.
  4. Faruque MR, Islam MT
    PLoS One, 2014;9(10):e109947.
    PMID: 25350398 DOI: 10.1371/journal.pone.0109947
    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.
  5. Islam MT, Alam MS
    Materials (Basel), 2013 Jan 07;6(1):143-155.
    PMID: 28809299 DOI: 10.3390/ma6010143
    A compact planar meander-bridge high impedance electromagnetic structure (MBHIES) was designed and its bandgap characteristics, mutual coupling reduction abilities were studied and compared in detail. Several parametric analyses were performed to obtain optimized design values and the transmission responses were calculated through the suspended microstrip line and waveguide simulation methods. The achieved bandgap is 2.3 GHz (2.55-4.85 GHz) with -61 dB minimum transmission coefficient level at the center frequency of 3.6 GHz. To see the effectiveness, the proposed design was inserted between a microstrip patch antenna array which operates at 3.8 GHz and whose operating bandwidth falls within the MBHIES bandgap. The surface wave suppression phenomenon was analyzed and simulated results are verified by measuring the fabricated prototypes, both are in good agreement. The configuration reduced the mutual coupling by 20.69 dB in simulation and 19.18 dB in measurement, without affecting the radiation characteristics of the array but increasing the gain slightly.
  6. Wong HS, Islam MT, Kibria S
    ScientificWorldJournal, 2014;2014:725806.
    PMID: 24967440 DOI: 10.1155/2014/725806
    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.
  7. Islam MM, Faruque MR, Islam MT
    ScientificWorldJournal, 2014;2014:528489.
    PMID: 24971379 DOI: 10.1155/2014/528489
    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.
  8. Ahsan MR, Islam MT, Habib Ullah M, Misran N
    ScientificWorldJournal, 2014;2014:856504.
    PMID: 24723832 DOI: 10.1155/2014/856504
    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.
  9. Samsuzzaman M, Islam MT, Mandeep JS, Misran N
    ScientificWorldJournal, 2014;2014:804068.
    PMID: 24696661 DOI: 10.1155/2014/804068
    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.
  10. Alam MS, Islam MT, Arshad H
    ScientificWorldJournal, 2014;2014:159468.
    PMID: 24883354 DOI: 10.1155/2014/159468
    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design.
  11. Islam MM, Islam MT, Faruque MR
    ScientificWorldJournal, 2013;2013:378420.
    PMID: 24385878 DOI: 10.1155/2013/378420
    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.
  12. Islam MT, Samsuzzaman M, Islam MT, Kibria S
    Sensors (Basel), 2018 Dec 14;18(12).
    PMID: 30558191 DOI: 10.3390/s18124427
    An experimental system for early screening of a breast tumor is presented in this article. The proposed microwave imaging (MI) system consists of a moveable array of nine improved negative-index metamaterial (MTM)-loaded ultrawideband (UWB) antenna sensor with incorporation of a corresponding SRR (split-ring resonator) and CLS (capacitively loaded strip) structure, in a circular array, the stepper motor-based array-mounting stand, the adjustable phantom hanging platform, an RF switching system to control the receivers, and a personal computer-based signal processing and image reconstruction unit using MATLAB. The improved antenna comprises of four-unit cells along one axis, where an individual unit cell integrates a balancing SRR and CLS pair, which makes the antenna radiation omnidirectional over the operating frequencies. The electrical dimensions of this proposed antenna are 0.28λ × 0.20λ × 0.016λ, measured at the lowest operating frequency of 2.97 GHz as the operating bandwidth of this is in between 2.97⁻15 GHz (134.82% bandwidth), with stable directional radiation pattern. SP8T 8 port switch is used to enable the eight receiver antennas to sequentially send a 3⁻8.0 GHz microwave signal to capture the backscattered signal by MATLAB software. A low-cost realistic homogeneous breast phantom with tumor material is developed and measured to test the capability of the imaging system to detect the breast tumors. A post-processing delay-multiply-and-sum (DMAS) algorithm is used to process the recorded backscatter signal to get an image of the breast phantom, and to accurately identify the existence and located area of multiple breast tumor tissues.
  13. Islam SS, Faruque MR, Islam MT
    Sci Rep, 2016 09 16;6:33624.
    PMID: 27634456 DOI: 10.1038/srep33624
    A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects.
  14. Alam T, Islam MT, Cho M
    Sci Rep, 2019 Mar 05;9(1):3441.
    PMID: 30837629 DOI: 10.1038/s41598-019-40207-3
    Epsilon-and-mu-near-zero (EMNZ) metamaterial structure inspired UHF antenna for nanosatellite has been proposed in this paper. The antenna consists of 3 × 2-unit cell array on the ground plane and a meander line radiating patch. Coaxial probe feeding technique has been obtained to excite the antenna. The meander line enables the antenna to resonate at lower UHF band and the metamaterial array is used to make the resonant frequency stable by reducing the coupling effect with metallic nanosatellite structure. The metamaterial structure exhibits EMNZ characteristics from 385 MHz to 488.5 MHz, which facilitates stable resonant frequency and higher antenna efficiency when embedded with nanosatellite structure. The proposed EMNZ inspired antenna has achieved measured impedance bandwidth (S11 
  15. Hoque A, Islam MT, Almutairi AF
    Sensors (Basel), 2020 Jun 11;20(11).
    PMID: 32545228 DOI: 10.3390/s20113323
    A low-profile high-directivity, and double-negative (DNG) metamaterial-loaded antenna with a slotted patch is proposed for the 5G application. The radiated slotted arm as a V shape has been extended to provide a low-profile feature with a two-isometric view square patch structure, which accelerates the electromagnetic (EM) resonance. Besides, the tapered patch with two vertically split parabolic horns and the unit cell metamaterial expedite achieve more directive radiation. Two adjacent splits with meta units enhance the surface current to modify the actual electric current, which is induced by a substrate-isolated EM field. As a result, the slotted antenna shows a 7.14 dBi realized gain with 80% radiation efficiency, which is quite significant. The operation bandwidth is 4.27-4.40 GHz, and characteristic impedance approximately remains the same (50 Ω) to give a VSWR (voltage Standing wave ratio) of less than 2, which is ideal for the expected application field. The overall size of the antenna is 60 × 40 × 1.52 mm. Hence, it has potential for future 5G applications, like Internet of Things (IoT), healthcare systems, smart homes, etc.
  16. Ramachandran T, Faruque MRI, Islam MT
    Sci Rep, 2022 02 02;12(1):1803.
    PMID: 35110653 DOI: 10.1038/s41598-022-05851-2
    This research study introduces a multi-layered square-shaped metamaterial (MSM) structure for the electromagnetic (EM) absorption reduction in wireless mobile devices. Usually, wireless devices, for example, a cellular phone emits radiofrequency (RF) energy to the surroundings when used it. Moreover, fast-growing wireless communication technologies that support cellular data networks have also motivated this study. Hence, the focus of the research was to reduce the Specific Absorption Rate (SAR) for the Sub-6 frequency range by designing a multi-layered and compact, 10 × 10mm2 sized metamaterial structure that can be attached inside a mobile phone by avowing any overlapping with existing parts. Overall, six distinct square-shaped metamaterials were constructed on 0.25 mm thick Rogers RO3006 substrate material to reach the target of this investigation. Furthermore, numerical simulations of the proposed metamaterial electromagnetic properties and SAR reduction values were performed by adopting Computer Simulation Technology (CST) Microwave Studio 2019 software. From these simulations, the proposed MSM structure exhibited multi-band resonance frequencies accurately at 1.200, 1.458, 1.560, 1.896 GHz (at L-band), 2.268, 2.683 2.940, 3.580 GHz (at S-band) and 5.872 GHz (at C-band). Simultaneously, the proposed MSM structure was simulated in High-Frequency Structure Simulator (HFSS) to authenticate the numerical simulation data. The comparison of simulation data shows that only the primary and last resonance frequencies were reduced by 0.02 and 0.012 GHz, whereas the rest of the frequencies were increased by 0.042, 0.030, 0.040, 0.032, 0.107, 0.080, and 0.020 GHz in sequential order. In addition, the introduced MSM structure manifests left-handed behaviour at all the resonance frequencies. Nevertheless, the highest recorded SAR values were 98.136% and 98.283% at 1.560 GHz for 1 g and 10 g of tissue volumes. In conclusion, the proposed MSM met the objectives of this research study and can be employed in EM absorption reduction applications.
  17. Islam MS, Islam MT, Almutairi AF
    Sci Rep, 2021 11 10;11(1):22015.
    PMID: 34759284 DOI: 10.1038/s41598-021-01486-x
    This paper presents the preparation and measurement of tissue-mimicking head phantom and its validation with the iteratively corrected coherence factor delay-multiply-and-sum (IC-CF-DMAS) algorithm for brain stroke detection. The phantom elements are fabricated by using different chemical mixtures that imitate the electrical properties of real head tissues (CSF, dura, gray matter, white matter, and blood/stroke) over the frequency band of 1-4 GHz. The electrical properties are measured using the open-ended dielectric coaxial probe connected to a vector network analyzer. Individual phantom elements are placed step by step in a three-dimensional skull. The IC-CF-DMAS image reconstruction algorithm is later applied to the phantom to evaluate the effectiveness of detecting stroke. The phantom elements are preserved and measured multiple times in a week to validate the overall performance over time. The electrical properties of the developed phantom emulate the similar properties of real head tissue. Moreover, the system can also effectively detect the stroke from the developed phantom. The experimental results demonstrate that the developed tissue-mimicking head phantom is time-stable, and it shows a good agreement with the theoretical results in detecting and reconstructing the stroke images that could be used in investigating as a supplement to the real head tissue.
  18. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2014 Jul 02;7(7):4994-5011.
    PMID: 28788116 DOI: 10.3390/ma7074994
    This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
  19. Ashraf FB, Alam T, Islam MT
    Materials (Basel), 2017 Jul 05;10(7).
    PMID: 28773113 DOI: 10.3390/ma10070752
    A Xi-shaped meta structure, has been introduced in this paper. A modified split-ring resonator (MSRR) and a capacitive loaded strip (CLS) were used to achieve the left-handed property of the metamaterial. The structure was printed using silver metallic nanoparticle ink, using a very low-cost photo paper as a substrate material. Resonators were inkjet-printed using silver nanoparticle metallic ink on paper to make this metamaterial flexible. It is also free from any kind of chemical waste, which makes it eco-friendly. A double negative region from 8.72 GHz to 10.91 GHz (bandwidth of 2.19 GHz) in the X-band microwave spectra was been found. Figure of merit was also obtained to measure any loss in the double negative region. The simulated result was verified by the performance of the fabricated prototype. The total dimensions of the proposed structure were 0.29 λ × 0.29 λ × 0.007 λ. It is a promising unit cell because of its simplicity, cost-effectiveness, and easy fabrication process.
  20. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2015 Jul 29;8(8):4790-4804.
    PMID: 28793472 DOI: 10.3390/ma8084790
    The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links