Six prenylated flavones, including one new compound, were isolated and identified from the stem bark extracts of Artocarpus altilis. The new prenylated flavone hydroxyartocarpin (1) was characterized as 3-(gamma,gamma-dimethylallyl)-6-isopentenyl-5,8,2',4'-tetrahydroxy-7-methoxyflavone and the known compounds were artocarpin (2), morusin (3), cycloartobiloxanthone (4), cycloartocarpin A (5) and artoindonesianin V (6). The structures of the compounds were determined by spectroscopic methods (IR, MS, (1)H-NMR and (13)C-NMR) and comparison with published data for the known compounds.
Two new xanthones, pyranocycloartobiloxanthone A (1) and dihydroartoindonesianin C (2), were isolated from the stem bark of Artocarpus obtusus Jarrett by chromatographic separation. Their structures were determined by using spectroscopic methods and comparison with known related compounds. Pyranocycloartobiloxanthone A (1) showed strong free radical scavenging activity by using DPPH assay as well as cytotoxicity towards K562, HL-60, and MCF7 cell lines.
Investigation on the leaves of Melicope bonwickii (F.Muell.) T.Hartley (Rutaceae) afforded a new 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (1) together with the known 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (2), evellerine (3) kokusaginine (4) and an amide aurantiamide acetate (5). Compounds 1 and 2 showed significant activity against cervical cell lines (Hela).
A new flavonoid, dihydroglychalcone-A, was isolated from the leaves extract of Glycosmis chlorosperma in addition to two known sulphur-containing amides, dambullin and gerambullin. The structure of the new compound was assigned as 2'-hydroxy-4,6'-dimethoxy-3',4'-(2",2"-dimethylpyrano)dihydrochalcone. The extract of the leaves was also found to exhibit antimicrobial and cytotoxic activities.
In a continuation of our study of the Rutaceae, detailed chemical investigation on Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia gave four new coumarins. The structures of the coumarins have been fully characterised by spectroscopic methods as 3",4"-dihydrocapnolactone 1, 2',3'-epoxyisocapnolactone 2, 8-hydroxyisocapnolactone-2',3'-diol 3 and 8-hydroxy-3",4"-dihydrocapnolactone-2',3'-diol 4.
A new coumarin, 8,4''-dihydroxy-3'',4''-dihydrocapnolactone-2',3'-diol (1) and two known triterpenes, 5(6)-gluten-3-one (2) and 5(6)-gluten-3alpha-ol (3) were isolated from the leaves of Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia and their structures were characterized by spectroscopic methods.
Background: Up to 86% of oral cancer (OC) patients present at the late stage where survival is dismal. Limited access to specialist diagnosis is a significant factor for late presentation. The increasing use of smartphones presents an opportunity to use digital technology to facilitate early detection of OC. Aim: To evaluate the feasibility of using Mobile Mouth Screening Anywhere (MeMoSA®) to facilitate early detection of OC. Methods: A mobile phone app named MeMoSA was developed and the feasibility of integrating this for documentation of oral lesions, and communication between dentists and specialists for management decisions were evaluated. The experience of dentists and specialists in using MeMoSA was determined using qualitative questionnaires. Results: Communication between specialist and dentists using MeMoSA stratified cases and streamlined referral of patients. Twelve of 48 patients were found to have oral lesions or signs suspicious of cancer and 3 required referrals. The patient's compliance for referral was tracked with MeMoSA. All dentists agreed that MeMoSA could facilitate early detection of OC and believed that MeMoSA could assist in the identification of oral mucosal lesions through direct communication with specialists and continuous learning in the recognition of high-risk lesions. Conclusions: MeMoSA has the potential to be used to promote equitable health care and streamline patient management that could result in early detection of OC.