Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Jayapalan JJ, Muniandy S, Chan SP
    Indian J Hum Genet, 2010 May;16(2):78-86.
    PMID: 21031056 DOI: 10.4103/0971-6866.69351
    Wide inter-ethnic allelic variations of the Angiotensin Converting Enzyme (ACE) i nsertion-deletion (I/D) gene polymorphism were thought to be responsible for the conflicting gene-diabetic nephropathy disease association worldwide. We have investigated the genetic susceptibility of the ACE gene to diabetic nephropathy in the multiethnic Malaysian population.
  2. Jayapalan JJ, Muniandy S, Chan SP
    PMID: 19058590
    Discrepancies in angiotensin-1 converting enzyme (ACE) allele genetic susceptibility with disease etiology have been attributed to ethnic differences. We investigated ACE gene polymorphism of the multiethnic Malaysian population by utilizing nested polymerase chain reaction. Allelic frequency of 0.65 and 0.35 for I and D allele, respectively in the pooled population was comparable with other Asian populations. A significant association was found between the Malaysian ethnic groups and ACE I/D genotype. The II genotype was found at higher frequency among the Malays but a greater frequency of DD genotype among Indians.
  3. Hashim OH, Jayapalan JJ, Lee CS
    PeerJ, 2017;5:e3784.
    PMID: 28894650 DOI: 10.7717/peerj.3784
    In recent years, the use of lectins for screening of potential biomarkers has gained increased importance in cancer research, given the development in glycobiology that highlights altered structural changes of glycans in cancer associated processes. Lectins, having the properties of recognizing specific carbohydrate moieties of glycoconjugates, have become an effective tool for detection of new cancer biomarkers in complex bodily fluids and tissues. The specificity of lectins provides an added advantage of selecting peptides that are differently glycosylated and aberrantly expressed in cancer patients, many of which are not possibly detected using conventional methods because of their low abundance in bodily fluids. When coupled with mass spectrometry, research utilizing lectins, which are mainly from plants and fungi, has led to identification of numerous potential cancer biomarkers that may be used in the future. This article reviews lectin-based methods that are commonly adopted in cancer biomarker discovery research.
  4. Jessie K, Jayapalan JJ, Rahim ZH, Hashim OH
    Electrophoresis, 2014 Dec;35(24):3504-11.
    PMID: 25223738 DOI: 10.1002/elps.201400252
    Prolonged chewing of betel quid is known to cause oral diseases, including cancer. The present study was performed to screen for aberrant proteins in the saliva of habitual betel quid chewers compared to nonchewers. Saliva of female subjects (n = 10) who had been chewing betel quid for more than 20 years and nonbetel quid chewers (n = 10) of the same gender and range of age was analyzed by gel-based proteomics. Increased structural microheterogeneity of saliva haptoglobin beta chains indicated by shifts of focused spots similar to that earlier reported in patients with oral squamous cell carcinoma, and their relatively higher abundance compared to nonbetel quid chewers, were detected in saliva protein profiles of all chewers. In addition, the majority of the betel quid chewers also showed significant higher abundance of hemopexin, alpha-1B glycoprotein, alpha1-antitrypsin, complement C3, and transthyretin. These proteins had previously been associated with several different cancers. Our data demonstrated different forms of protein aberration in the saliva of betel quid chewers, which may be indicative of early oral precancerous conditions.
  5. Jayapalan JJ, Ng KL, Razack AH, Hashim OH
    Electrophoresis, 2012 Jul;33(12):1855-62.
    PMID: 22740474 DOI: 10.1002/elps.201100608
    Diagnosis of prostate cancer (PCa) is currently much reliant on the invasive and time-consuming transrectal ultrasound-guided biopsy of the prostate gland, particularly in light of the inefficient use of prostate-specific antigen as its biomarker. In the present study, we have profiled the sera of patients with PCa and benign prostatic hyperplasia (BPH) using the gel- and lectin-based proteomics methods and demonstrated the significant differential expression of apolipoprotein AII, complement C3 beta chain fragment, inter-alpha-trypsin inhibitor heavy chain 4 fragment, transthyretin, alpha-1-antitrypsin, and high molecular weight kininogen (light chain) between the two groups of patients' samples. Our data are suggestive of the potential use of the serum proteins as complementary biomarkers to effectively discriminate PCa from BPH, although this requires further extensive validation on clinically representative populations.
  6. Mohamed Nasir N, Hiji J, Jayapalan JJ, Hashim OH
    PeerJ, 2020;8:e8248.
    PMID: 32030317 DOI: 10.7717/peerj.8248
    Background: Most human hairs collected at old crime scenes do not contain nuclear DNA and are therefore of less value for forensic investigations. In the present study, hair shaft proteins were extracted from 40 healthy subjects between the ages of 21 to 40 years and profiled using gel electrophoresis-based proteomics to determine if they can be used to distinguish gender and ethnicity.

    Methods: Extraction of the human hair shaft proteins was performed using a newly developed alkaline solubilisation method. The extracts were profiled by 2-dimensional electrophoresis and resolved protein spots were identified by mass spectrometry and queried against the human hair database. The study was then followed-up by immunoblotting of the identified hair shaft keratin of interest using commercially available antibodies.

    Results: Separation of the human hair shaft proteins by 2-dimensional electrophoresis generated improved and highly resolved profiles. Comparing the hair shaft protein profiles of 10 female with 10 male subjects and their identification by mass spectrometry and query of the human hair database showed significant altered abundance of truncated/processed type-II keratin peptides K81 (two spots), K83 (one spot) and K86 (three spots). The 2-dimensional electrophoresis profiling of 30 hair shaft samples taken from women of similar age range but from three distinctive ethnic subpopulations in Malaysia further showed significant altered abundance of one type-I and four type-II truncated/processed keratin peptides including K33b, K81, K83 and K86 (2 spots) between at least two of the ethnic groups. When a followed-up immunoblotting experiment was performed to detect the relative expression of the K86 peptides using commercialised antibodies, similar trends of expression were obtained. The present data, when taken together, demonstrated the potential use of keratin peptide signatures of the human hair shaft to distinguish gender and ethnicity although this needs to be further substantiated in a larger scale study.

  7. Subramanian P, Jayakumar M, Jayapalan JJ, Hashim OH
    Pharmacol Rep, 2014 Dec;66(6):1037-42.
    PMID: 25443732 DOI: 10.1016/j.pharep.2014.06.018
    BACKGROUND: Elevated blood ammonia leads to hyperammonaemia that affects vital central nervous system (CNS) functions. Fisetin, a naturally occurring flavonoid, exhibits therapeutic benefits, such as anti-cancer, anti-diabetic, anti-oxidant, anti-angiogenic, neuroprotective and neurotrophic effects.

    METHODS: In this study, the chronotherapeutic effect of fisetin on ammonium chloride (AC)-induced hyperammonaemic rats was investigated, to ascertain the time point at which the maximum drug effect is achieved. The anti-hyperammonaemic potential of fisetin (50mg/kg b.w. oral) was analysed when administered to AC treated (100mg/kg b.w. i.p.) rats at 06:00, 12:00, 18:00 and 00:00h. Amelioration of pathophysiological conditions by fisetin at different time points was measured by analysing the levels of expression of liver urea cycle enzymes (carbamoyl phosphate synthetase-I (CPS-I), ornithine transcarbamoylase (OTC) and argininosuccinate synthetase (ASS)), nuclear transcription factor kappaB (NF-κB p65), brain glutamine synthetase (GS) and inducible nitric oxide synthase (iNOS) by Western blot analysis.

    RESULTS: Fisetin increased the expression of CPS-I, OTC, ASS and GS and decreased iNOS and NF-κB p65 in hyperammonaemic rats. Fisetin administration at 00:00h showed more significant effects on the expression of liver and brain markers, compared with other time points.

    CONCLUSIONS: Fisetin could exhibit anti-hyperammonaemic effect owing to its anti-oxidant and cytoprotective influences. The temporal variation in the effect of fisetin could be due to the (i) chronopharmacological, chronopharmacokinetic properties of fisetin and (ii) modulations in the endogenous circadian rhythms of urea cycle enzymes, brain markers, redox enzymes and renal clearance during hyperammonaemia by fisetin. However, future studies in these lines are necessitated.

  8. Adenan DM, Jaafar Z, Jayapalan JJ, Abdul Aziz A
    PeerJ, 2020;8:e9230.
    PMID: 32477840 DOI: 10.7717/peerj.9230
    INTRODUCTION: A high body fat coupled with low cardiopulmonary fitness and an increase in oxidative stress has been connoted as contributing factors in developing cardiovascular comorbidities. This study aimed to investigate the correlation between antioxidants and oxidative stress status with cardiopulmonary responses in women of different body mass index (BMI).

    SUBJECTS AND METHODS: Eighty female adults were recruited and divided into three groups; normal weight (n = 23), overweight (n = 28) and obese (n = 29), according to their BMI. Blood samples were obtained prior to cardiopulmonary exercise testing. Plasma samples were separated by centrifugation and analysed for enzymatic antioxidant activity including catalase, glutathione peroxidase and superoxide dismutase. Non-enzymatic antioxidant activities were assessed using 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging and ferric reducing ability of plasma (FRAP) assays. To evaluate the oxidative stress status of subjects, levels of reactive oxygen species and malondialdehyde, the by-product of lipid peroxidation, were measured. Cardiopulmonary responses were analysed using cardiopulmonary exercise testing (CPET) which involved 15 various parameters such as peak oxygen consumption, metabolic equivalents and respiratory exchange ratio.

    RESULTS: The obese group had significantly lower ABTS radical scavenging and FRAP activities than the normal weight group. A higher catalase activity was observed in the obese group than the normal weight group. Spearman's correlation showed an inverse relationship between catalase and peak oxygen consumption, while partial correlation analysis showed inverse correlations between superoxide dismutase and respiratory frequency, ABTS activity and oxygen pulse, and between ABTS activity and cardiac output.

    CONCLUSION: Our results demonstrate a lower cardiovascular fitness and antioxidant capacity in obese women; the higher catalase activity may be a compensatory mechanism. The negative correlations found between these two parameters may indicate the potential effect of antioxidants on the cardiopulmonary system and deserve further analysis in a larger population. Nevertheless, this study provides the basis for future studies to further explore the relationships between redox status and cardiopulmonary responses. This can potentially be used to predict future risk of developing diseases associated with oxidative stress, especially pulmonary and cardiovascular diseases.

  9. Mohamed E, Jayapalan JJ, Abdul-Rahman PS, Omar SZ, Hashim OH
    Biomark Res, 2013;1(1):19.
    PMID: 24252421 DOI: 10.1186/2050-7771-1-19
    Accumulated data from previous studies appear to suggest a link between the overexpression of a 35 kDa fragment of serum inter-alpha-trypsin inhibitor H4 (ITIH4) with cancers that are associated with up-regulated levels of oestrogens. The truncated fragment was postulated to be a product of oestrogen-induced action of kallikrein on native ITIH4. The present lectin-based proteomic analyses were performed to assess the specificity of the 35 kDa fragment of ITIH4 as a potential cancer biomarker and determine whether it was also overexpressed in the sera of cancer-negative pregnant women who are known to have high levels of plasma oestrogens.
  10. Jessie K, Jayapalan JJ, Ong KC, Abdul Rahim ZH, Zain RM, Wong KT, et al.
    Electrophoresis, 2013 Sep;34(17):2495-502.
    PMID: 23784731 DOI: 10.1002/elps.201300107
    Confirmation of oral squamous cell cancer (OSCC) currently relies on histological analysis, which does not provide clear indication of cancer development from precancerous lesions. In the present study, whole saliva proteins of patients with OSCC (n = 12) and healthy subjects (n = 12) were separated by 2DE to identify potential candidate biomarkers that are much needed to improve detection of the cancer. The OSCC patients' 2DE saliva protein profiles appeared unique and different from those obtained from the healthy subjects. The patients' saliva α1-antitrypsin (AAT) and haptoglobin (HAP) β chains were resolved into polypeptide spots with increased microheterogeneity, although these were not apparent in their sera. Their 2DE protein profiles also showed presence of hemopexin and α-1B glycoprotein, which were not detected in the profiles of the control saliva. When subjected to densitometry analysis, significant altered levels of AAT, complement C3, transferrin, transthyretin, and β chains of fibrinogen and HAP were detected. The increased levels of saliva AAT, HAP, complement C3, hemopexin, and transthyretin in the OSCC patients were validated by ELISA. The strong association of AAT and HAP with OSCC was further supported by immunohistochemical staining of cancer tissues. The differently expressed saliva proteins may be useful complementary biomarkers for the early detection and/or monitoring of OSCC, although this requires validation in clinically representative populations.
  11. Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH
    Electrophoresis, 2013 Jun;34(11):1663-9.
    PMID: 23417432 DOI: 10.1002/elps.201200583
    The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required.
  12. Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH
    PeerJ, 2016;4:e2080.
    PMID: 27257555 DOI: 10.7717/peerj.2080
    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
  13. Jayapalan JJ, Subramanian P, Kani A, Hiji J, Najjar SG, Abdul-Rahman PS, et al.
    Arch Insect Biochem Physiol, 2020 Nov;105(3):e21738.
    PMID: 32924199 DOI: 10.1002/arch.21738
    The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.
  14. Subramanian P, Prasanna V, Jayapalan JJ, Abdul Rahman PS, Hashim OH
    J Insect Physiol, 2014 Jun;65:37-44.
    PMID: 24780191 DOI: 10.1016/j.jinsphys.2014.04.005
    Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.
  15. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
  16. Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O
    J Insect Sci, 2017 Jan 01;17(2).
    PMID: 28931163 DOI: 10.1093/jisesa/iex040
    Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism.
  17. Lim CY, Junit SM, Aziz AA, Jayapalan JJ, Hashim OH
    Electrophoresis, 2018 12;39(23):2965-2973.
    PMID: 30280388 DOI: 10.1002/elps.201800258
    The hypolipidemic effects of Tamarindus indica fruit pulp extract (Ti-FPE) have been earlier reported but the underlying molecular mechanisms are still uncertain. In this study, hamsters fed with Ti-FPE, both in the absence and presence of high-cholesterol diet, were shown to have significantly reduced levels of serum triglyceride, LDL-C and total cholesterol. The Ti-FPE-fed non-hypercholesterolemic hamsters also showed significant enhanced levels of serum apolipoprotein A1, antithrombin III, transferrin and vitamin D binding protein. In diet-induced hypercholesterolemic hamsters, apolipoprotein A1, antithrombin III and transferrin, which were relatively low in levels, became significantly enhanced when the hamsters were fed with Ti-FPE. These Ti-FPE-fed hypercholesterolemic hamsters also showed significant higher levels of serum vitamin D binding protein. When the different treated groups of hamsters were analyzed for the levels of the four serum proteins by ELISA, similar altered abundance were detected. Ingenuity Pathway Analysis of the Ti-FPE modulated serum proteins singled out "Lipid metabolism, molecular transport, small molecule biochemistry" as the top network. Our results suggest that the hypolipidemic effects of Ti-FPE are associated with alterations of serum proteins that are known to be cardioprotective and involved in the metabolism of lipids. The MS data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD010232.
  18. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH
    Int J Med Sci, 2019;16(3):450-460.
    PMID: 30911279 DOI: 10.7150/ijms.29935
    Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all cancers of the thyroid. It is also one of the few cancers with a rapidly increasing incidence. PTC is usually contained within the thyroid gland and generally biologically indolent. Prognosis of the cancer is excellent, with less than 2% mortality at 5 years. However, more than 25% of patients with PTC developed a recurrence during a long term follow-up. The present article provides an updated condensed overview of PTC, which focuses mainly on the molecular alterations involved and recent biomarker investigations.
  19. Jayapalan JJ, Lee CS, Lee CC, Ng KL, Junit SM, Hashim OH
    Clin Biochem, 2018 Mar;53:127-131.
    PMID: 29355489 DOI: 10.1016/j.clinbiochem.2018.01.008
    BACKGROUND: Benign thyroid goiter (BTG) and papillary thyroid carcinoma (PTC) are often interchangeably misdiagnosed.

    METHODS: Pooled urine samples of patients with BTG (n=10), patients with PTC (n=9) and healthy controls (n=10) were subjected to iTRAQ analysis and immunoblotting.

    RESULTS: The ITRAQ analysis of the urine samples detected 646 proteins, 18 of which showed significant altered levels (p<0.01; fold-change>1.5) between patients and controls. Whilst four urinary proteins were commonly altered in both BTG and PTC patients, 14 were unique to either BTG or PTC. Amongst these, four proteins were further chosen for validation using immunoblotting, and the enhanced levels of osteopontin in BTG patients and increased levels of a truncated gelsolin fragment in PTC patients, relative to controls, appeared to corroborate the findings of the iTRAQ analysis.

    CONCLUSION: The data of the present study is suggestive of the potential application of urinary osteopontin and gelsolin to discriminate patients with BTG from those with PTC non-invasively. However, this needs to be further validated in studies of individual urine samples.

  20. Daphne Teh AL, Jayapalan JJ, Loke MF, Wan Abdul Kadir AJ, Subrayan V
    Exp Eye Res, 2021 10;211:108734.
    PMID: 34428458 DOI: 10.1016/j.exer.2021.108734
    This study aimed to investigate the metabolite differences between patients with keratoconus and control subjects and identify potential serum biomarkers for keratoconus using a non-targeted metabolomics approach. Venous blood samples were obtained from patients with keratoconus (n = 20) as well as from age-, gender- and race-matched control subjects (n = 20). Metabolites extracted from serum were separated and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometer. Processing of raw data and analysis of the data files was performed using Agilent Mass Hunter Qualitative software. The identified metabolites were subjected to a principal component and hierarchical cluster analysis. Appropriate statistical tests were used to analyze the metabolomic profiling data. Together, the analysis revealed that the dehydroepiandrosterone sulfate from the steroidal hormone synthesis pathway was significantly upregulated in patients with keratoconus (p 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links