Displaying all 16 publications

Abstract:
Sort:
  1. Nasir MK, Md Noor R, Kalam MA, Masum BM
    ScientificWorldJournal, 2014;2014:836375.
    PMID: 25032239 DOI: 10.1155/2014/836375
    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.
  2. Ganasen P, Khan MR, Kalam MA, Mahmud MS
    Bioprocess Biosyst Eng, 2014 Nov;37(11):2353-9.
    PMID: 24879090 DOI: 10.1007/s00449-014-1213-6
    This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250-750 nm. The reaction follows Michaelis-Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver-Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.
  3. Abedin MJ, Masjuki HH, Kalam MA, Varman M, Arbab MI, Fattah IM, et al.
    ScientificWorldJournal, 2014;2014:349858.
    PMID: 25162046 DOI: 10.1155/2014/349858
    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.
  4. Amar M, Akram N, Chaudhary GQ, Kazi SN, Soudagar MEM, Mubarak NM, et al.
    Sci Rep, 2023 Jan 09;13(1):411.
    PMID: 36624198 DOI: 10.1038/s41598-023-27491-w
    The use of solar energy is one of the most prominent strategies for addressing the present energy management challenges. Solar energy is used in numerous residential sectors through flat plate solar collectors. The thermal efficiency of flat plate solar collectors is improved when conventional heat transfer fluids are replaced with nanofluids because they offer superior thermo-physical properties to conventional heat transfer fluids. Concentrated chemicals are utilized in nanofluids' conventional synthesis techniques, which produce hazardous toxic bi-products. The present research investigates the effects of novel green covalently functionalized gallic acid-treated multiwall carbon nanotubes-water nanofluid on the performance of flat plate solar collectors. GAMWCNTs are highly stable in the base fluid, according to stability analysis techniques, including ultraviolet-visible spectroscopy and zeta potential. Experimental evaluation shows that the thermo-physical properties of nanofluid are better than those of base fluid deionized water. The energy, exergy and economic analysis are performed using 0.025%, 0.065% and 0.1% weight concentrations of GAMWCNT-water at varying mass flow rates 0.010, 0.0144, 0.0188 kg/s. The introduction of GAMWCNT nanofluid enhanced the thermal performance of flat plate solar collectors in terms of energy and exergy efficiency. There is an enhancement in efficiency with the rise in heat flux, mass flow rate and weight concentration, but a decline is seen as inlet temperature increases. As per experimental findings, the highest improvement in energy efficiency is 30.88% for a 0.1% weight concentration of GAMWCNT nanofluid at 0.0188 kg/s compared to the base fluid. The collector's exergy efficiency increases with the rise in weight concentration while it decreases with an increase in flow rate. The highest exergy efficiency is achieved at 0.1% GAMWCNT concentration and 0.010 kg/s mass flow rate. GAMWCNT nanofluids have higher values for friction factor compared to the base fluid. There is a small increment in relative pumping power with increasing weight concentration of nanofluid. Performance index values of more than 1 are achieved for all GAMWCNT concentrations. When the solar thermal collector is operated at 0.0188 kg/s and 0.1% weight concentration of GAMWCNT nanofluid, the highest size reduction, 27.59%, is achieved as compared to a flat plate solar collector with water as a heat transfer fluid.
  5. Rashedul HK, Kalam MA, Masjuki HH, Teoh YH, How HG, Monirul IM, et al.
    Environ Sci Pollut Res Int, 2017 Apr;24(10):9305-9313.
    PMID: 28233198 DOI: 10.1007/s11356-017-8573-9
    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.
  6. Imdadul HK, Zulkifli NW, Masjuki HH, Kalam MA, Kamruzzaman M, Rashed MM, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2350-2363.
    PMID: 27815850 DOI: 10.1007/s11356-016-7847-y
    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.
  7. Monirul IM, Masjuki HH, Kalam MA, Zulkifli NWM, Shancita I
    Environ Sci Pollut Res Int, 2017 Aug;24(22):18479-18493.
    PMID: 28646309 DOI: 10.1007/s11356-017-9333-6
    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.
  8. Chenrayan V, Gebremaryam G, Shahapurkar K, Mani K, Fouad Y, Kalam MA, et al.
    Sci Rep, 2023 Oct 24;13(1):18156.
    PMID: 37875590 DOI: 10.1038/s41598-023-45460-1
    Recently, most service or product-oriented industries have been focusing on their activities to uphold the green and sustainable environment protocol owing to the increased environmental pollution. Concerning this issue, industries are now concentrating on developing recyclable or waste materials products. This research advocates developing and validating a banana fiber sandwich composite to promote the beneficial usage of bio-waste. The composite sandwich specimens were fabricated with resin-impregnated woven banana fiber mat as a skin, and the core was reinforced with three different weight percentages (5, 7.5 and 10%) of chopped banana fiber. The sandwich specimens were pressed into a three-point bending test to validate the structural integrity. The flexural characteristics like flexural strength and modulus were examined experimentally, whereas the key strength indices like flexural stiffness and core shear modulus were evaluated analytically. Post-fracture surfaces were studied through a scanning electron microscope to investigate the failure mechanism. The experimental and analytical results indicate that 10% banana fiber content in the sandwich core increases the flexural strength and flexural modulus to 225% and 147%, respectively, compared to the neat epoxy core. The numerical simulation was also performed through FEA to validate the experimental findings. The numerical results are in good concurrence with the experimental one.
  9. Shah MA, Hayder G, Kumar R, Kumar V, Ahamad T, Kalam MA, et al.
    Sci Rep, 2023 Aug 30;13(1):14248.
    PMID: 37648719 DOI: 10.1038/s41598-023-41446-1
    A comprehensive understanding of physiochemical properties, thermal degradation behavior and chemical composition is significant for biomass residues before their thermochemical conversion for energy production. In this investigation, teff straw (TS), coffee husk (CH), corn cob (CC), and sweet sorghum stalk (SSS) residues were characterized to assess their potential applications as value-added bioenergy and chemical products. The thermal degradation behavior of CC, CH, TS and SSS samples is calculated using four different heating rates. The activation energy values ranged from 81.919 to 262.238 and 85.737-212.349 kJ mol-1 and were generated by the KAS and FWO models and aided in understanding the biomass conversion process into bio-products. The cellulose, hemicellulose, and lignin contents of CC, CH, TS, and SSS were found to be in the ranges of 31.56-41.15%, 23.9-32.02%, and 19.85-25.07%, respectively. The calorific values of the residues ranged from 17.3 to 19.7 MJ/kg, comparable to crude biomass. Scanning electron micrographs revealed agglomerated, irregular, and rough textures, with parallel lines providing nutrient and water transport pathways in all biomass samples. Energy Dispersive X-ray spectra and X-ray diffraction analysis indicated the presence of high carbonaceous material and crystalline nature. FTIR analysis identified prominent band peaks at specific wave numbers. Based on these findings, it can be concluded that these residues hold potential as energy sources for various applications, such as the textile, plastics, paints, automobile, and food additive industries.
  10. Chenrayan V, Palanisamy D, Mani K, Shahapurkar K, Elahi M Soudagar M, Fouad Y, et al.
    Heliyon, 2024 Mar 30;10(6):e28057.
    PMID: 38545133 DOI: 10.1016/j.heliyon.2024.e28057
    Cardiovascular diseases, particularly coronary artery disease, pose big challenges to human life. Deployment of the stent is a preferable treatment for the above-mentioned disease. However, stents are usually made up of shape memory alloy called Nitinol. The poorer surface finish on the machined nitinol stents accelerates the migration of Nickel ions from the implanted nitinol stent, which is considered toxic and can lead to stenosis. The current study deals with controlling surface quality by minimising surface roughness and improving corrosion resistance. Femtosecond laser (fs-laser 10-15 s) micromachining was employed to machine the Nitinol surface to achieve sub-micron surface roughness. The Grey relational analysis (GRA)-coupled design of the experimental technique was implemented to determine optimal levels of four micromachining parameters (laser power, pulse frequency, scanning speed, and scanning pattern) varied at three levels to achieve minimum surface roughness and to maximise the volume ablation. The results show that to yield minimum surface roughness and maximum volume ablation, laser power and scanning speed are in a higher range. In contrast, the pulse frequency is lower, and the scanning pattern is in a zig-zag manner. ANOVA results manifest that scanning speed is the predominant factor in minimising surface roughness, followed by pulse frequency. Furthermore, the corrosion behaviour of the machined nitinol specimens was evaluated, and the results show that specimens with lower surface roughness had lower corrosion rates.
  11. Hebbale AM, Kumar M, Soudagar MEM, Ahamad T, Kalam MA, Mubarak NM, et al.
    Sci Rep, 2023 Jul 04;13(1):10778.
    PMID: 37402883 DOI: 10.1038/s41598-023-37991-4
    A typical ferrite/martensitic heat-resistant steel (T91) is widely used in reheaters, superheaters and power stations. Cr3C2-NiCr-based composite coatings are known for wear-resistant coatings at elevated temperature applications. The current work compares the microstructural studies of 75 wt% Cr3C2- 25 wt% NiCr-based composite clads developed through laser and microwave energy on a T91 steel substrate. The developed clads of both processes were characterized through a field emission scanning electron microscope (FE-SEM) attached with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and assessment of Vickers microhardness. The Cr3C2-NiCr based clads of both processes revealed better metallurgical bonding with the chosen substrate. The microstructure of the developed laser clad shows a distinctive dense solidified structure, with a rich Ni phase occupying interdendritic spaces. In the case of microwave clad, the hard chromium carbide particles consistently dispersed within the soft nickel matrix. EDS study evidenced that the cell boundaries are lined with chromium where Fe and Ni were found inside the cells. The X-ray phase analysis of both the processes evidenced the common presence of phases like chromium carbides (Cr7C3, Cr3C2, Cr23C6), Iron Nickel (FeNi3) and chromium-nickel (Cr3Ni2, CrNi), despite these phases iron carbides (Fe7C3) are observed in the developed microwave clads. The homogeneous distributions of such carbides in the developed clad structure of both processes indicated higher hardness. The typical microhardness of the laser-clad (1142 ± 65HV) was about 22% higher than the microwave clad (940 ± 42 HV). Using a ball-on-plate test, the study analyzed microwave and laser-clad samples' wear behavior. Laser-cladding samples showed superior wear resistance due to hard carbide elements. At the same time, microwave-clad samples experienced more surface damage and material loss due to micro-cutting, loosening, and fatigue-induced fracture.
  12. Venu H, Soudagar MEM, Kiong TS, Razali NM, Wei HR, Khan TMY, et al.
    Sci Rep, 2025 Feb 18;15(1):5911.
    PMID: 39966510 DOI: 10.1038/s41598-025-90165-2
    The current work focuses on utilization of ANN (artificial neural network) for the prediction of performance and tailpipe emissions of Garcinia gummigutta methyl ester (GGME) enriched with H2 and TiO2 nano additives. For experimentation, H2 gas was introduced to the mixes containing TiO2 nanoparticles. Diesel, B10 blend (10% GGME biofuel + 90% Diesel), B20 (20% GGME biofuel + 80% Diesel), Diesel-TiO2 (Mineral Diesel with 100 ppm TiO2 nano additives), B10-H2-TiO2 (B10 blend with 100 ppm nano additives + 5 L/min of H2) and B20-H2-TiO2 (B20 blend with 100 ppm nanoparticles + 5 L/min of H2) were considered for experimentation. A constant mass flow rate of 10 L/min was used for the hydrogen flow throughout the test procedures. Test results were carefully analyzed to determine the performance and emission measures. Different speeds between 1800 and 2800 rpm were used for each test. When combined with pure Diesel and mixtures of biodiesel, these nanoparticles and hydrogen enhanced the performance data. For instance, the brake-specific fuel consumption was reduced but the power, torque, and thermal efficiency were increased. Although there was a modest rise in NO emissions, the primary goal of lowering CO, CO2, and other UHC emissions was met. The ANN models confirm and agreed the Diesel engine experimental work possesses minimal root mean square error (RMSE) and correlation coefficient values were estimated. This ideal model predicts and optimizes the engine output at a higher accuracy level, which gives better results compared with other empirical and theoretical models.
  13. Awang MSN, Mohd Zulkifli NW, Abbas MM, Amzar Zulkifli S, Kalam MA, Ahmad MH, et al.
    ACS Omega, 2021 Aug 24;6(33):21655-21675.
    PMID: 34471769 DOI: 10.1021/acsomega.1c03073
    This research was aimed to examine the diesel engine's performance and emission of secondary fuels (SFs), comprising waste plastic oil (WPO) and palm oil biodiesel (POB), and to analyze their tribological properties. Their compositions were analyzed by gas chromatography-mass spectrometry (GC-MS). Five SFs (10-50% POB in WPO) were prepared by mechanical stirring. The results were compared to blank WPO (WPO100) and Malaysian commercial diesel (B10). WPO90 showed the maximum brake power (BP) and brake torque (BT) among the SFs, and their values were 0.52 and 0.59% higher compared to B10, respectively. The increase in POB ratio (20-50%) showed a negligible difference in BP and BT. WPO70 showed the lowest brake-specific fuel consumption among the SFs. The brake thermal efficiency (BTE) increased with POB composition. The maximum reductions in emission of hydrocarbon (HC, 37.21%) and carbon monoxide (CO, 27.10%) were achieved by WPO50 among the SFs. WPO90 showed the maximum reduction in CO2 emission (6.78%). Increasing the POB composition reduced the CO emissions and increased the CO2 emissions. All SFs showed a higher coefficient of friction (COF) than WPO100. WPO50 showed the minimal increase in COF of 2.45%. WPO90 showed the maximum reduction in wear scar diameter (WSD), by 10.34%, compared to B10. Among the secondary contaminated samples, SAE40-WPO90 showed the lowest COF, with 5.98% reduction compared to SAE40-WPO100. However, with increasing POB content in the secondary contaminated samples, the COF increased. The same trend was also observed in their WSD. Overall, WPO90 is the optimal SF with excellent potential for diesel engines.
  14. Jathar LD, Ganesan S, Awasarmol U, Nikam K, Shahapurkar K, Soudagar MEM, et al.
    Environ Pollut, 2023 Jun 01;326:121474.
    PMID: 36965686 DOI: 10.1016/j.envpol.2023.121474
    Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.
  15. Taqui SN, Syed AA, Mubarak NM, Farade RA, Khan MAM, Kalam MA, et al.
    Sci Rep, 2023 Dec 19;13(1):22665.
    PMID: 38114620 DOI: 10.1038/s41598-023-49471-w
    Research studies have been carried out to accentuate Fennel Seed Spent, a by-product of the Nutraceutical Industry, as an inexpensive, recyclable and operational biosorbent for bioremediation of Acid Blue 113 (AB113) in simulated water-dye samples and textile industrial effluent (TIE). The physical process of adhesion of AB113 on the surface of the biosorbent depends on various parameters, such as the initial amount of the dye, amount and expanse of the biosorbent particles, pH of the solution and temperature of the medium. The data obtained was analyzed using three two-parameter and five three-parameter adsorption isotherm models to glean the adsorbent affinities and interaction mechanism of the adsorbate molecules and adsorbent surface. The adsorption feature study is conducted employing models of Weber-Morris, pseudo 1st and 2nd order, diffusion film model, Dumwald-Wagner and Avrami model. The study through 2nd order pseudo and Avrami models produced complementary results for the authentication of experimental data. The thermodynamic features, ΔG0, ΔH0, and ΔS0 of the adsorption process are acclaimed to be almost spontaneous, physical in nature and endothermic in their manifestation. Surface characterization was carried out using Scanner Electron Microscopy, and identification and determination of chemical species and molecular structure was performed using Infrared Spectroscopy (IR). Maximum adsorption evaluated using statistical optimization with different combinations of five independent variables to study the individual as well as combined effects by Fractional Factorial Experimental Design (FFED) was 236.18 mg g-1 under optimized conditions; pH of 2, adsorbent dosage of 0.500 g L-1, and an initial dye concentration of 209.47 mg L-1 for an adsorption time of 126.62 min with orbital shaking of 165 rpm at temperature 49.95 °C.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links