Displaying all 9 publications

Abstract:
Sort:
  1. Zaini MF, Razak IA, Khairul WM, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Nov 01;74(Pt 11):1589-1594.
    PMID: 30443387 DOI: 10.1107/S2056989018014329
    The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two mol-ecules of (E)-3-(1H-indol-2-yl)-1-(4-nitro-phen-yl)prop-2-en-1-one and a water mol-ecule. The main mol-ecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, mol-ecules are linked by O--H⋯O and N-H⋯O hydrogen bonds, forming chains along [010]. In addition, weak C-H⋯O, C-H⋯π and π-π inter-actions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6-311 G++(d,p) basis level and the HOMO-LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis.
  2. Zaini MF, Razak IA, Khairul WM, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2019 May 01;75(Pt 5):685-689.
    PMID: 31110811 DOI: 10.1107/S2056989019005243
    The title compound, C23H15NO3, adopts an s-cis conformation with respect to the ethyl-ene C=C and carbonyl C=O double bonds in the enone unit. The mol-ecule is significantly twisted with a dihedral angle of 48.63 (14)° between the anthracene ring system and the benzene ring. In the crystal, mol-ecules are linked into inversion dimers with an R 2 2(10) graph-set motif via pairs of C-H⋯O hydrogen bonds. The inter-molecular inter-actions were analysed and qu-anti-fied by Hirshfeld surface analysis. The mol-ecular structure was optimized and a small HOMO-LUMO energy gap of 2.55 eV was obtained using the DFT method at the B3LYP/6-311 G++(d,p) level of theory. This value is in close agreement with the experimental value of 2.52 eV obtained from the UV-vis analysis. The crystal used was a two-component merohedral twin with a refined ratio of 0.1996 (16):0.8004 (16).
  3. Azizun NN, Khairul WM, Daud AI, Sarbon NM
    J Food Sci Technol, 2021 Sep;58(9):3338-3345.
    PMID: 34366451 DOI: 10.1007/s13197-020-04893-6
    A bio-nanocomposite film is a polymer blend with nanofiller dispersed in a biopolymer matrix. The aim of this study is to investigate the functional, gas sensing and antimicrobial properties of bio-nanocomposite films incorporated with chicken skin gelatin/ tapioca starch/zinc oxide at different pH levels (pH 4, 6, 7 and 8). Bio-nanocomposite films were prepared using a casting technique followed by the characterization of their functional, gas sensing and antimicrobial properties. Film formulations with pH at different levels showed increased thickness, colour and water vapour permeability (WVP) (p 
  4. Zaini MF, Razak IA, Khairul WM, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2020 Mar 01;76(Pt 3):387-391.
    PMID: 32148881 DOI: 10.1107/S2056989020002054
    A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-di-hydro-8aH-carbazol-9-yl)phen-yl]-1-(4-nitro-phen-yl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen-Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethyl-enic double bonds (C=O and C=C). The crystal packing features C-H⋯O and C-H⋯π inter-actions whose percentage contribution was qu-anti-fied by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and mol-ecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6-311 G++(d,p) basis set.
  5. Kasan NA, Yusof SZM, Manan H, Khairul WM, Zakeri HA
    J Environ Manage, 2021 Sep 15;294:113008.
    PMID: 34119989 DOI: 10.1016/j.jenvman.2021.113008
    High nutrient loading in aquatic environment has become the main causative of harmful algae blooms (HABs) in water resources particularly pond, lake and river. HABs are mostly dominated by microalgae derived from the group of blue-green algae which are capable of releasing harmful toxins. Therefore, this study aims to investigate the inhibitory effects of thiourea derivatives on the growth of such blue-green algae. Thiourea derivatives have been proven to exhibit antifungal and antibacterial effects. However, there is still limited study had been conducted on the effect of thiourea derivatives toward blue-green algae species in recent years. In this research, a species of blue-green algae from Kenyir Lake, Terengganu, Malaysia was successfully isolated using morphological characters and molecularly identified as Synechoccus elongatus. Four new thiourea derivative compounds were also successfully synthesised. The compounds were designed with variation on different R-substitution group and characterised using Nuclear Magnetic Resonance (NMR) to confirm their molecular structure. Those compounds were characterised as 1-Benzyl-3-(3,5-dimethoxy-benzoyl)-thiourea (C1), 1-(3-Chloro-benzyl)-3-(3,5-dimethoxy-benzoyl)-thiourea (C2), 1-(3,5-Dimethoxy-benzoyl)-3-(3-methyl-benzyl)-thiourea (C3) and 1-(3,5-Dimethoxy-benzoyl)-3-(3-trifluoromethyl-benzyl)-thiourea (C4). For the inhibition assessment,S. elongatus were treated with C1-C4 for 5 day at concentration of 2, 5, 10 and 20 μg/ml, respectively. C3 compound showed the highest inhibition percentage with 98% of inhibition after 5 days treatment. By using Bradford method, protein extraction of S. elongatus was conducted at the highest inhibition percentage. Protein concentration of treated species was observed with 3.28 μg/ml as compared to protein concentration of control with 6.48 μg/ml. This result indicated the reduction of protein content after the treatment. Protein band pattern was identified intensed after the treatment SDS PAGE was carried out. The thiourea derivatives compound proved to have successfully inhibited the growth of blue-green algae. Hence, further study should be carried out to ensure the compound can be practically utilized in the pond and in natural environment.
  6. Vigneswari S, Gurusamy TP, Khairul WM, H P S AK, Ramakrishna S, Amirul AA
    Polymers (Basel), 2021 Jul 26;13(15).
    PMID: 34372060 DOI: 10.3390/polym13152454
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5-12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.
  7. Mat Yunin MYA, Mohd Adenam N, Khairul WM, Yusoff AH, Adli HK
    Polymers (Basel), 2022 Apr 30;14(9).
    PMID: 35567022 DOI: 10.3390/polym14091853
    Changes in physical properties of (H2C=C(CH3)CO2CH2CH2NH3)2PbI2Cl2 and (H2C=C(CH3)CO2CH2CH2NH3)2Pb(NO3)2Cl2 (2D) perovskite materials from iodide-based (I-AMP) and nitrate-based (N-AMP) leads were investigated at different durations (days) for various storage conditions. UV-Vis spectra of both samples showed an absorption band of around λmax 420 nm due to the transition of n to π* of ethylene (C=C) and amine (NH2). XRD perovskite peaks could be observed at approximately 25.35° (I-AMP) and 23.1° (N-AMP). However, a major shift in I-AMP and dramatic changes in the crystallite size, FHWM and crystallinity percentage highlighted the instability of the iodide-based material. In contrast, N-AMP showed superior stability with 96.76% crystallinity even at D20 under the S condition. Both materials were exposed to ammonia (NH3) gas, and a new XRD peak of ammonium lead iodide (NH4PbI3) with a red-shifted perovskite peak (101) was observed for the case of I-AMP. Based on the FWHM, crystallite size, crystallinity and lattice strain analysis, it can be concluded N-AMP's stability was maintained even after a few days of exposure to the said gases. These novel nitrate-based lead perovskite materials exhibited great potential for stable perovskite 2D materials and recorded less toxicity compared to famous lead iodide (PbI2) material.
  8. Khairul WM, Hashim F, Rahamathullah R, Mohammed M, Aisyah Razali S, Ahmad Tajudin Tuan Johari S, et al.
    PMID: 38134650 DOI: 10.1016/j.saa.2023.123776
    The fabrication of molecular electronics from non-toxic functional materials which eventually would potentially able to degrade or being breaking down into safe by-products have attracted much interests in recent years. Hence, in this study, the introduction of mixed highly functional substructures of chalcone (-CO-CH=CH-) and ethynylated (C≡C) as building blocks has shown ideal performance as solution-processed thin film candidatures. Two types of derivatives, (MM-3a) and (MM-3b) repectively, showed a substantial Stokes shifts at 75 nm and 116 nm, in which such emission exhibits an intramolecular charge transfer (ICT) state and fluoresce characteristics. The density functional theory (DFT) simulation shows that MM-3a and MM-3b exhibit low energy gaps of 3.70 eV and 2.81 eV, respectively. TD-DFT computations for molecular electrostatic potential (MEP) and frontier molecular orbitals (FMO) were also used to emphasise the structure-property relationship. A solution-processed thin film with a single layer of ITO/PEDOT:PSS/MM-3a-MM-3b/Au exhibited electroluminescence behaviour with orange and purple emissions when supplied with direct current (DC) voltages. To promote the safer application of the derivatives formed, ethynylated chalcone materials underwent toxicity studies toward Acanthamoeba sp. to determine their suitability as non-toxic molecules prior to the determination as safer materials in optical limiting interests. From the preliminary test, no IC50 value was obtained for both compounds via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay analysis and molecular docking analysis between MM-3a and MM-3b, with profilin protein exhibited weak bond interactions and attaining huge interaction distances.
  9. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links