Displaying all 8 publications

Abstract:
Sort:
  1. Viswenaden, Praveena, Kazi, Hamid Ali, Khan, Jiyauddin, Florence, May, Kaleemullah, Mohammed, Al-Dhalli, Samer, et al.
    MyJurnal
    It is normally agreed that medicinal plants and their products are safer than their artificial counterparts; nevertheless, some plant products may show efficacious but have low therapeutic index or safety margin. Carica papaya fruits, leaves, seed and latex are used medicinally for various types of ailments. The Non-Steroidal Anti-inflammatory drugs nowadays are not useful in all cases because of their side effects which is associated with gastric irritation, bleeding, and ulcers. This study was considered to assess the effectiveness of methanol extract of Carica papaya seeds as compared to the treatment alternative of the Non-Steroidal Anti-inflammatory drugs which is indomethacin 50mg/kg. Objective: The main objective is to know the effectiveness of the anti-inflammatory effect of the methanolic extract of Carica papaya seeds as compared to the treatment alternative of Non-steroidal anti-inflammatory activity-Indomethacin 50mg/kg. Method: The maceration method was used to extract the Carica papaya seeds by using Methanol, two different doses of extract of 250mg/kg and 500mg/kg were administered orally after inducing the paw edema using the 1% of carrageenan. Then, the length of the paw edema was measured by using veneer caliper. Results: In the rat paw edema model, 500mg/kg of Carica papaya seeds shows 71.43%, 250mg/kg shows 63.91% and standard Indomethacin 50mg/kg treatment showed 88.72% of percentage inhibition. The results are statistically analyzed using One Way ANNOVA test. Conclusion: Post hoc analysis using Effect Scheffe test shows significant difference between group 1 and group 2, 3 and 4 (p ˂ 0.001) respectively at all time. The results showed it is significant value (p< 0.001) for the Methanolic extract of Carica papaya seeds regardless of its doses.
  2. Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, et al.
    Front Pharmacol, 2023;14:1159131.
    PMID: 37006997 DOI: 10.3389/fphar.2023.1159131
    A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
  3. Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, et al.
    Chem Zvesti, 2023 Apr 04.
    PMID: 37362791 DOI: 10.1007/s11696-023-02795-3
    The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
  4. Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, et al.
    Front Pharmacol, 2023;14:1174330.
    PMID: 37205904 DOI: 10.3389/fphar.2023.1174330
    Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
  5. Krishna SS, Farhana SA, T P A, Hussain SM, Viswanad V, Nasr MH, et al.
    Front Immunol, 2023;14:1229667.
    PMID: 37744376 DOI: 10.3389/fimmu.2023.1229667
    The increasing prevalence of food allergies worldwide and the subsequent life-threatening anaphylactic reactions often have sparse treatment options, providing only symptomatic relief. Great strides have been made in research and in clinics in recent years to offer novel therapies for the treatment of allergic disorders. However, current allergen immunotherapy has its own shortcomings in terms of long-term efficacy and safety, due to the local side effects and the possibility of anaphylaxis. Allergen-specific immunotherapy is an established therapy in treating allergic asthma, allergic rhinitis, and allergic conjunctivitis. It acts through the downregulation of T cell, and IgE-mediated reactions, as well as desensitization, a process of food tolerance without any allergic events. This would result in a protective reaction that lasts for approximately 3 years, even after the withdrawal of therapy. Furthermore, allergen-specific immunotherapy also exploits several routes such as oral, sublingual, and epicutaneous immunotherapy. As the safety and efficacy of allergen immunotherapy are still under research, the exploration of newer routes such as intra-lymphatic immunotherapy would address unfulfilled needs. In addition, the existence of nanoparticles can be exploited immensely in allergen immunotherapy, which would lead to safer and efficacious therapy. This manuscript highlights a novel drug delivery method for allergen-specific immunotherapy that involves the administration of specific allergens to the patients in gradual increasing doses, to induce desensitization and tolerance, as well as emphasizing different routes of administration, mechanism, and the application of nanoparticles in allergen-specific immunotherapy.
  6. Krishna SS, Farhana SA, T P A, Hussain SM, Viswanad V, Nasr MH, et al.
    Front Immunol, 2023;14:1332906.
    PMID: 38124738 DOI: 10.3389/fimmu.2023.1332906
    [This corrects the article DOI: 10.3389/fimmu.2023.1229667.].
  7. Dutta RS, Elhassan GO, Devi TB, Bhattacharjee B, Singh M, Jana BK, et al.
    Heliyon, 2024 Apr 15;10(7):e28457.
    PMID: 38586388 DOI: 10.1016/j.heliyon.2024.e28457
    β-carotene is obtained from both plants and animals and has been the subject of intense research because of its provitamin-A, antioxidant, and anticancer effects. Its limited absorption and oxidative degradation significantly reduce its antitumor efficacy when taken orally. In our study, we utilize a central composite design to develop "bio-safe and highly bio-compatible" solid lipid nanoparticles (SLNs) by using only the combination of palmitic acid and poloxamer-407, a block co-polymer as a surfactant. The current research aim to develop and characterize SLNs loaded with β-carotene to improve their bioavailability and therapeutic efficacy. In addition, the improved cytotoxicity of solid lipid nanoparticles loaded with β-carotene was screened in-vitro in human breast cancer cell lines (MCF-7). The nanoparticles exhibits good stability, as indicated by their mean zeta potential of -26.3 ± 1.3 mV. The particles demonstrated high drug loading and entrapment capabilities. The fabricated nanoparticle's prolonged release potential was shown by the in-vitro release kinetics, which showed a first-order release pattern that adhered to the Higuchi model and showed a slow, linear, and steady release over 48 h. Moreover, a diffusion-type release mechanism was used to liberate β-carotene from the nanoparticles. For six months, the nanoparticles also showed a notable degree of physical stability. Lastly, using the MTT assay, the anti-cancer properties of β-carotene-loaded solid lipid nanoparticles were compared with intact β-carotene on MCF-7 cell lines. The cytotoxicity tests have shown that the encapsulation of β-carotene in the lipid bilayers of the optimized formulation does not interfere with the anti-cancer activity of the drug. When compared to standard β-carotene, β-carotene loaded SLNs showed enhanced anticancer efficacy and it is a plausible therapeutic candidate for enhancing the solubility of water-insoluble and degradation-sensitive biotherapeutics like β-carotene.
  8. Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, et al.
    Front Oncol, 2023;13:1204722.
    PMID: 37469419 DOI: 10.3389/fonc.2023.1204722
    The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links