Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Khan MN
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):160-79.
    PMID: 20673861 DOI: 10.1016/j.cis.2010.06.005
    A new method, based upon semi-empirical kinetic approach, for the determination of ion exchange constant for ion exchange processes occurring between counterions at the cationic micellar surface is described in this review article. Basically, the method involves a reaction kinetic probe which gives observed pseudo-first-order rate constants (k(obs)) for a nucleophilic substitution reaction between the nonionic and anionic reactants (R and S) in the presence of a constant concentration of both reactants as well as cationic micelles and varying concentrations of an inert inorganic or organic salt (MX). The observed data (k(obs), versus [MX]) fit satisfactorily (in terms of residual errors) to an empirical equation which could be derived from an equation explaining the mechanism of the reaction of the kinetic probe in terms of pseudophase micellar (PM) model coupled with another empirical equation. This (another) empirical equation explains the effect of [MX] on cationic micellar binding constant (K(S)) of the anionic reactant (say S) and gives an empirical constant, K(X/S). The magnitude of K(X/S) is the measure of the ability of X(-) to expel S(-) from a cationic micellar pseudophase to the bulk aqueous phase through ion exchange X(-)/S(-). The values of K(X/S) and K(Y/S) (where Y(-) is another inert counterion) give the ion exchange constant, K(X)(Y) (=K(X)/K(Y) where K(X) and K(Y) represent cationic micellar binding constants of X(-) and Y(-), respectively). The suitability of this method is demonstrated by the use of three different reaction kinetic probes and various MX.
  2. Khan MN
    J Org Chem, 1996 Nov 15;61(23):8063-8068.
    PMID: 11667789
    A slight modification of the Gabriel synthesis of primary amines is suggested on the basis of the observed and reported values of rate constants for the alkaline and acid hydrolyses of phthalimide, phthalamic acid, benzamide, and their N-substituted derivatives. The suggested procedure requires shorter reactions time and milder acid-base reaction conditions compared with the conventional acid-base hydrolysis in the Gabriel synthesis. A slight modification in the Ing-Manske procedure is also suggested. Pseudo-first-order rate constants, k(obs), for hydrolysis of N-phthaloylglycine, NPG, decrease from 24.1 x 10(-3) to 7.72 x 10(-3) and 6.12 x 10(-3) s(-1) with increasing acetonitrile and 1,4-dioxan contents, respectively, from 2 to 50% v/v (all the percentages given in the paper are vol %), while increasing the organic cosolvents content from 50 to 80% increases k(obs) from 7.72 x 10(-3) to 19.7 x 10(-3) s(-1) for acetonitrile and from 6.12 x 10(-3) to 52.8 x 10(-3) s(-1) for 1,4-dioxan, in aqueous organic solvents containing 0.004 M NaOH at 35 degrees C. The rate constants for NPG hydrolysis decrease from 2.11 x 10(-2) to 1.19 x 10(-4) s(-1) with increasing MeOH content from 2 to 84%, in aqueous organic solvents containing 2% MeCN and 0.004 M NaOH at 35 degrees C.
  3. Khan MN
    J Org Chem, 1997 May 16;62(10):3190-3193.
    PMID: 11671702
    Pseudo-first-order rate constants obtained for methanolysis of ionized phenyl salicylate (PS(-)) at constant [MeOH], [MeCN], [NaOH] or [KOH], and [KBr] and at 35 degrees C show a decrease with the increase in [CTABr] (where CTABr represents cetyltrimethylammonium bromide) from 0.0-0.01 M. These observed data obey a pseudophase model of the micelle. The micellar binding constants (K(S)) of PS(-), pseudo-first-order rate constants (k(M)) for methanolysis of PS(-) in the micellar pseudophase and cmc are almost unchanged with the change in [NaOH] from 0.005-0.050 M. The increase in [KBr] from 0.0 to 0.3 M at 0.01 M KOH decreases K(S) from 5140 to 653 M(-)(1) and cmc from 1.9 x 10(-)(4) to 0.2 x 10(-)(4) M. Pseudo-first-order rate constants, k(M), are almost independent of [KBr] at 0.01 M KOH.
  4. Khan MN, Ismail E
    J Phys Chem A, 2009 Jun 11;113(23):6484-8.
    PMID: 19449852 DOI: 10.1021/jp902886z
    A kinetic probe, which involves the determination of pseudo-first-order rate constants (k(obs)) for the nucleophilic reaction of piperidine (Pip) with ionized phenyl salicylate (S(-)) at constant [Pip](T) (= 0.1 M), [S(-)](T) (= 2 x 10(-4) M), [CTABr](T), < or = 0.10 M NaOH and varying concentration of MX (= 3-ClC(6)H(4)CO(2)Na and C(6)H(5)CH=CHCO(2)Na), gives the following information. The nonlinear plots of k(obs) versus [MX] reveal indirectly the occurrence of more than one independent ion-exchange processes at the CTABr micellar surface. These observed data fit to a kinetic relationship derived from an empirical equation coupled with pseudophase micellar (PM) model. This relationship gives an empirical constant (K(X/S)) that is used to determine the usual ion-exchange constant (K(X)(Y)). The values of K(X)(Br) (Y = Br) have been calculated for X = 3-ClC(6)H(4)CO(2)(-) and C(6)H(5)CH=CHCO(2)(-). More than 12-fold larger value of K(X)(Br) for X = 3-ClC(6)H(4)CO(2)(-) than that for X = 2-ClC(6)H(4)CO(2)(-) is attributed to the presence and absence of viscoelasticity in the respective presence of 3-ClC(6)H(4)CO(2)(-) and 2-ClC(6)H(4)CO(2)(-).
  5. Khan MN, Ismail E
    J Colloid Interface Sci, 2001 Aug 15;240(2):636-639.
    PMID: 11482975
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 4-nitrophthalimide show a monotonic decrease with increase in [C(12)E(23)](T) (total concentration of Brij 35) at constant [CH(3)CN] and [NaOH]. This micellar effect is explained in terms of a pseudophase micelle model. The rate of hydrolysis becomes too slow to monitor at [C(12)E(23)](T)>/=0.03 M in the absence of cetyltrimethylammonium bromide (CTABr) and at [C(12)E(23)](T)>/=0.04 M in the presence of 0.006-0.02 M CTABr at 0.01 M NaOH. The plots of k(obs) versus [C(12)E(23)](T) show minima at 0.006 and 0.01 M CTABr, while such a minimum is not visible at 0.02 M CTABr. Copyright 2001 Academic Press.
  6. Khan MN, Ariffin A
    Org Biomol Chem, 2003 Apr 21;1(8):1404-8.
    PMID: 12929671
    The rate of formation and disappearance of phthalic anhydride (PAn) intermediate in the aqueous cleavage of N-methoxyphthalamic acid (NMPA) under acidic pH was studied spectrophotometrically in mixed CH3CN-H2O solvents. The rate of formation of PAn from NMPA is almost independent of the change in acetonitrile content from 20 to 70% v/v in mixed aqueous solvents. The rate constants for the formation of PAn from NMPA are approximately 10-fold smaller than the corresponding rate constants for the formation of PAn from o-carboxybenzohydroxamic acid (OCBA). These observations are ascribed to the consequence of the occurrence of slightly different mechanisms in these reactions.
  7. Khan MN, Arifin Z, Yusoff MR, Ismail E
    J Colloid Interface Sci, 1999 Dec 15;220(2):474-476.
    PMID: 10607470
    The effects of Brij 35 micelles, CTABr micelles, and mixed Brij 35-CTABr micelles on the acid-base behavior of phenyl salicylate (PST) have been studied in aqueous solution containing 2% v/v acetonitrile. The apparent pK(b) (pK(app)(b)) of PST is decreased by 1.5 pK units with the increase in [Brij 35] from 0 to 0.02 M which is attributed to micellar medium effect. The values of pK(app)(b) remain almost independent of [CTABr] within its range 0.01-0.03 M. The increase in [CTABr] from 0 to 0.03 M in aqueous solution containing 0.02 M Brij 35 has not resulted in a change in pK(app)(b). This shows that the characeristic structural features of nonionic Brij 35 micelles remain essentially unchanged on addition of CTABr under the present experimental conditions. Copyright 1999 Academic Press.
  8. Khan MN, Arifin Z, Ismail E, Ali SF
    J Org Chem, 2000 Mar 10;65(5):1331-4.
    PMID: 10814092
    Effects of cetyltrimethylammonium bromide (CTABr) micelles on second-order rate constants (k(n)(obs)) for nucleophilic reactions of amines (piperidine and n-butylamine) with ionized phenyl salicylate (PS(-)) reveal a nonlinear decrease with the increase in [D(n)] (where [D(n)] = [CTABr](T) - cmc) at a constant [NaBr] and 35 degrees C. The observed data, at a constant [NaBr], fit reasonably well to a pseudophase model of micelles, and such a data fit gives kinetic parameters such as CTABr micellar binding canstant (K(S)) of PS(-). The effect of [NaBr] upon K(S) is explained with the empirical relationship K(S) = K(S)(0)/(1 + psi[NaBr]), where psi is an empirical parameter.
  9. Yusof NS, Khan MN
    Adv Colloid Interface Sci, 2013 Jun;193-194:12-23.
    PMID: 23582713 DOI: 10.1016/j.cis.2013.03.002
    The fascinating and serendipitous discovery, in 1976, of the characteristic viscoelastic behavior of wormlike micelles of cetyltrimethylammonium salicylate (CTASa) surfactant solution at ~2×10(-4) M CTASa became a catalyst for an increasing interest in both industrial application and mechanism of the origin of micellar growth of this and related wormlike micellar systems. It has been perceived for more than three decades, based upon qualitative evidence, that the extent of the strength of the counterion (X) binding to ionic micelles determines the counterion-induced micellar structural transition from spherical-to-small rodlike-to-linear long stiff/flexible rodlike/wormlike-to-entangled wormlike micelles. This perception predicts the presence of a possible quantitative correlation of counterionic micellar binding constants (KX) with counterion-induced micellar growth. The quantitative estimation of counterion binding affinity to cationic micelles, in terms of the values of the degree of counterion binding (βX), is concluded to be either inefficient or unreliable for moderately hydrophobic counterions (such as substituted benzoate ions). The values of KX, measured in terms of conventional ion exchange constants (KX(Y)), can provide a quantitative correlation between KX or KX(Y) (with a reference counterion Y=Cl(-) or Br(-)) and counterion-induced ionic micellar growth. A recent new semi-empirical kinetic (SEK) method provides the estimation of KX(Y) for Y=Br as well as ratio of counterionic micellar binding constants KX/KBr (= RX(Br)) where the values of KBr and KX have been derived from the kinetic parameters in the presence of cationic spherical and nonspherical micelles, respectively. The SEK method has been used to determine the values of KX(Br) or RX(Br) for X=2-, 3- and 4-ClC6H4CO2(-). Rheometric measurements on aqueous CTABr/MX (MX=2-,3- and 4-ClBzNa) solutions containing 0.015 M CTABr and varying values of [MX] reveal the presence of spherical micelles for MX=2-ClBzNa and long linear as well as entangled wormlike micelles for MX=3- and 4-ClBzNa. The respective values of KX(Br) or RX(Br) of 5.7, 50 and 48 for X=2-, 3- and 4-ClBz(-) give a quantitative correlation with the rheometric measurements of the structural features of micelles of 0.015 M CTABr solutions containing 2-, 3- and 4 ClBzNa.
  10. Yusof NS, Khan MN
    J Phys Chem B, 2012 Feb 23;116(7):2065-74.
    PMID: 22272582 DOI: 10.1021/jp210467p
    The semiempirical kinetic method has been used to determine the ratio of cetyltrimethylammonium bromide, CTABr, micellar binding constants of counterions X (K(X)) and Br (K(Br)), i.e., K(X)/K(Br) (= R(X)(Br)) for X = dianionic 5-methyl- and 5-methoxysalicylate ions. The values of K(X) and K(Br) have been derived from the kinetic parameters obtained in the presence of spherical/nonspherical and spherical micelles, respectively. The values of R(X)(Br) remain essentially independent of [CTABr] within its range 0.005-0.015 M for both dianionic 5-methyl- and 5-methoxysalicylate ions. The increase in temperature from 35 to 55 °C decreases the values of R(X)(Br) from 796 to 53 for 5-methylsalicylate ions and from 89 to 7.0 for 5-methoxysalicylate ions. Rheological properties of 0.015 M CTABr solutions containing ≥0.01 M counterionic salt, M(2)X, show indirectly the presence of unilamellar vesicles, ULV, and long linear, entangled, and branched wormlike micelles, WM, at, respectively, 35 and 55 °C for X = dianionic 5-methylsalicylate ion. However, such studies show WM and probable spherical micelles, SM, at, respectively, 35 and 55 °C for X = dianionic 5-methoxysalicylate ions. It has been shown that, at a constant [CTABr], the micellar structural transitions from SM-to-WM-to-vesicles may be correlated quantitatively with the values of R(X)(Br) regardless of whether such micellar structural transitions occur due to variation in the values of [M(2)X] at a constant temperature or due to variation in temperature at a constant [M(2)X].
  11. Khan MN, Azri MH
    J Phys Chem B, 2010 Jun 24;114(24):8089-99.
    PMID: 20509705 DOI: 10.1021/jp102109q
    Pseudofirst-order rate constants for aqueous cleavage of N-(2'-hydroxyphenyl)phthalimide (1), obtained at 0.001 M NaOH, 2 x 10(-4) M 1, 2% v/v CH(3)CN, and 30 degrees C, show a nonmonotonic decrease with the increase in the total concentration of cetyltrimethylammonium bromide ([CTABr](T)) within its range >/=9 x 10(-5)-or=0.04 M CTABr and within a [NaBr] range of 0.0-0.005 M. These observations, in view of the pseudophase (PP) model of the micelle, reveal the presence of presumably spherical micelles at or=4 x 10(-4) M causes a micellar structural transition from most likely spherical to cylindrical, which is evident from the increase in K(S) values from 3.46 x 10(3) to 11.4 x 10(3) M(-1) with the increase in [CTABr](T) from 4 x 10(-4) to approximately 1 x 10(-3) M in the absence of NaBr. The values of k(obs) at different [NaBr] and at a constant [CTABr](T) follow a kinetic relationship derived from an empirical equation coupled with a PP model of micelle. This relationship gives the value of a kinetic parameter, F(X/S), which represents the fraction of micellized S(-) (S(-) = 1(-)) transferred to the aqueous phase by the limiting concentration of X(-) (X(-) = Br(-)) through ion exchange X(-)/S(-). The value of F(Br/1) is 0.65 +/- 0.12.
  12. Yusof NS, Khan MN
    Langmuir, 2010 Jul 6;26(13):10627-35.
    PMID: 20524703 DOI: 10.1021/la100863q
    Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K(X)(Br), for the probable presence of wormlike/viscoelastic micellar solutions under the conditions of the present study.
  13. Razak NA, Khan MN
    ScientificWorldJournal, 2014;2014:604139.
    PMID: 25478597 DOI: 10.1155/2014/604139
    The values of the relative counterion (X) binding constant R(X)(Br) (=K(X)/K(Br), where K(X) and K(Br) represent cetyltrimethylammonium bromide, CTABr, micellar binding constants of X(v-) (in non-spherical micelles), v = 1,2, and Br(-) (in spherical micelles)) are 58, 68, 127, and 125 for X(v-) = 1(-), 1(2-), 2(-), and 2(2-), respectively. The values of 15 mM CTABr/[Na(v)X] nanoparticles-catalyzed apparent second-order rate constants for piperidinolysis of ionized phenyl salicylate at 35 °C are 0.417, 0.488, 0.926, and 0.891 M(-1) s(-1) for Na(v)X = Na1, Na2 1, Na2, and Na2 2, respectively. Almost entire catalytic effect of nanoparticles catalyst is due to the ability of nonreactive counterions, X(v-), to expel reactive counterions, 3(-), from nanoparticles to the bulk water phase.
  14. Khan MN, Sim YL, Ariffin A
    ScientificWorldJournal, 2014;2014:592691.
    PMID: 24574900 DOI: 10.1155/2014/592691
    The values of pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1, obtained at 1.0 mM NaOH and within [C(m)E(n)]T (total concentration of C(m)E(n)) range of 3.0-5.0 mM for C(12)E(23) and 10-20 mM for C(18)E(20), fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversible C m E n micellar trapped 1 molecules (F(IT1)) vary in the range ~0-0.75 for C(12)E(23) and ~0-0.83 for C(18)E(20) under such conditions. The values of F(IT1) become 1.0 at ≥ 10 mM C(12)E(23) and 50 mM C(18)E(20). Kinetic analysis of the observed data at ≥ 10 mM C(12)E(23) shows near irreversible micellar entrapment of 1 molecules under such conditions.
  15. Sim YL, Ariffin A, Khan MN
    Bioorg Chem, 2008 Aug;36(4):178-82.
    PMID: 18440044 DOI: 10.1016/j.bioorg.2008.03.003
    The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0x10(-3)-1.0 M at 1.0M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 10(6)-fold compared to the expected rate of analogous intermolecular reaction.
  16. Cheong MY, Ariffin A, Khan MN
    J Phys Chem B, 2007 Oct 25;111(42):12185-94.
    PMID: 17914797
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-benzylphthalimide (1) show a nonlinear decrease with the increase in [C(m)E(n)]T (total concentration of Brij 58, m = 16, n = 20 and Brij 56, m = 16, n = 10) at constant [CH(3)CN] and [NaOH]. These nonionic micellar effects, within the certain typical reaction conditions, have been explained in terms of the pseudophase micellar (PM) model. The values of micellar binding constants (KS) of 1 are 1.04 x 10(3) M(-1) (at 1.0 x 10(-3) M NaOH) and 1.08 x 10(3) M(-1) (at 2.0 x 10(-3) M NaOH) for C(16)E(20) as well as 600 M(-1) (at 7.6 x 10(-4) M NaOH) and 670 M(-1) (at 1.0 x 10(-3) M NaOH) for C(16)E(10) micelles. The pseudo-first-order rate constants (kM) for hydrolysis of 1 in C(16)E(20) micellar pseudophase are approximately 90-fold smaller than those (kW) in water phase. The values of kM for hydrolysis of 1 in C(16)E(10) micelles are almost zero. Kinetic coupled with UV spectral data reveals significant irreversible nonionic micellar binding of 1 molecules in the micellar environment of nearly zero hydroxide ion concentration at >or=0.14 M C(16)E(20) and 1.0 x 10(-3) M NaOH while such observations could not be detected at or=3 x 10(-3) M C(16)E(10) and 7.6 x 10(-4) M NaOH, while the rate of hydrolysis of 1 is completely ceased at >or=0.05 M C(16)E(10) and 7.6 x 10(-4) M NaOH. The rate of hydrolysis of 1 at 5.0 x 10(-2) and 8.8 x 10(-2) M C(16)E(10) and 1.0 x 10(-3) M NaOH reveals the formation of presumably phthalic anhydride, whereas such observation was not observed in the C(16)E(20) micellar system under similar experimental conditions.
  17. Lajis NH, Noor HM, Khan MN
    J Pharm Sci, 1995 Jan;84(1):126-30.
    PMID: 7714735
    The hydroxide ion-catalyzed hydrolysis of securinine involves the ring opening of the lactone moiety. The rate of hydrolysis is insensitive to the ionic strength. The observed pseudo-first-order rate constants reveal a decrease of approximately 4-fold due to the increase in the MeCN content from 4 to 50% (v/v) in mixed aqueous solvent. The temperature dependence of the rate of hydrolysis follows the Eyring equation, which yields delta H* and delta S* as 11.0 kcal mol-1 and -34.5 cal deg-1 mol-1, respectively. The hydroxyl carboxylate product of the alkaline hydrolysis of securinine is shown to undergo cyclization in acidic medium to yield securinine. The observed pseudo-first-order rate constants for cyclization increase linearly with an increase in [H+]. The change in the content of MeCN from 3.8 to 47.2% (v/v) in mixed aqueous solvents does not show an effect on the rate of the cyclization reaction. The most plausible mechanisms for alkaline hydrolysis and acid cyclization reactions are also discussed.
  18. Billah MA, Akhtar S, Khan MN
    BMC Psychol, 2023 Apr 29;11(1):140.
    PMID: 37120632 DOI: 10.1186/s40359-023-01180-9
    OBJECTIVES: To explore relationship among perceived stress regarding loneliness, interpersonal trust and institutional trust of expatriates during the early COVID-19 period (from 30th March to 30th May 2020).

    METHODS: Data from  21,439 expatriates were extracted from COVIDiSTRESS global survey. The outcome variable was perceived stress. The explanatory variables were age, perceived loneliness, trust (interpersonal and institutional). Pairwise correlation, and structural equation modelling were used to determine relationship among outcome and explanatory variables.

    RESULTS: The majority of the expatriates were female (73.85%), married (60.20%), had college degree (47.76%), and employed (48.72%). Over 63% of the total expatriates reported that the COVID-19 pandemic changed their lives. The average age of the respondents was 40.4 years (± 13.7), and the average score of perceived stress, loneliness, interpersonal and institutional trust were 25.5, 7.4, 14.2 and 40.4, respectively. We found a moderate correlation of perceived stress with age, perceived loneliness, interpersonal trust and institutional trust (p 

  19. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2008 May 16;73(10):3730-7.
    PMID: 18410141 DOI: 10.1021/jo702695k
    The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links